Войти в мой кабинет
Регистрация
ГОТОВЫЕ РАБОТЫ / КУРСОВАЯ РАБОТА, БАНКОВСКОЕ ДЕЛО

Автоматизированные банковские системы.

natalya1980er 276 руб. КУПИТЬ ЭТУ РАБОТУ
Страниц: 23 Заказ написания работы может стоить дешевле
Оригинальность: неизвестно После покупки вы можете повысить уникальность этой работы до 80-100% с помощью сервиса
Размещено: 30.03.2019
Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы. Однако, для широкого класса интеллектуальных задач, таких, как распознавание образов, логические выводы и сложные в логическом отношении игры, доказательство теорем и т. п., такое формальное разбиение процесса поиска решения на отдельные элементарные шаги напротив часто оказывается весьма затруднительным, даже если само их решение несложно. Таким образом, возникает некоторое основание к тому, чтобы считать понятие интеллекта эквивалентным понятию универсального сверхалгоритма, который способен создавать алгоритмы решения конкретных задач.
Введение

Состояние прикладных исследований в области интеллектуальных информационных систем позволяет считать, что их результаты стали достаточно определенными. Сложилась сравнительно устойчивая система понятий, появились методология проектирования, построения и внедрения, определились типовые структуры таких систем и их компонентов. Принято считать, что интеллектуальной задачей является отыскание неизвестного алгоритма решения некой практической или теоретической проблемы, универсального на множестве свойственных этой проблеме исходных данных. Требуется только, чтобы исполнитель, решающий задачу, был способен выполнять те элементарные операции, из которых складывается процесс. Также важно, чтобы он педантично и аккуратно руководствовался предложенным алгоритмом. Такой исполнитель (человек или автомат), действуя чисто машинально, может успешно решать любую задачу рассматриваемого типа. Поэтому представляется совершенно естественным исключить их класса интеллектуальных такие задачи, для которых существуют стандартные методы решения.
Содержание

Введение 3 1.Основные понятия автоматизированных систем и способы их реализации 5 2.Использование автоматизированных систем в банковской сфере 12 2.1 Характеристика автоматизированных систем в банковской сфере 12 2.2 Структура и применение автоматизированных банковских систем 16 Заключение 24 Список использованной литературы 26
Список литературы

1. Геловани, В. Л. Интеллектуальные системы поддержки принятия решений в нештатных ситуациях. - М.: Эдиториал URSS, 2015. - 304 с. 2. Замула, А. А. Нечеткая модель управления качеством банковских услуг // Искусственный интеллект. 2012. № 2. - С. 89-94. 3. Игнатьева, А. В. Исследование систем управления. - М.: ЮНИТИ-ДАНА, 2013. - 157 с. 4. Карминский, А.М. Информационные системы в экономике: учеб. пособие / А.М. Карминский, Б.В. Черников - М.: Финансы и статистика, 2016. - 238 с. 5. Кондратюк, Д.Ю. Электронные финансы, интернет банкинг: мировые тенденции «российская специфика»: учебник / Д.Ю. Кондратюк - М.: Расчеты и операционная работа в КБ, 2014 - 367 с. 6. Леденева Т.М., Подвольный С.Л. Системы искусственного интеллекта и принятия решений: учебное пособие; Уфа: УГАТУ, 2015. – 246 с. 7. Липис, А.И. Электронная система денежных расчетов: учеб. пособие / А. И. Липис [и др.] - М.: Финансы и Статистика, 2012. - 269 с. 8. Лямин, Л.В. Основные подходы к осуществлению банковского надзора в области Интернет-банкинга за рубежом и в России: учеб. пособие / Л. В. Лямин - М.: Расчеты и операционная работа в КБ, 2014. - 365 c. 9. Поспелов Г. С. «Искусственный интеллект. Новые информационные технологии» - М.: «Наука 2016г.» 10. Рожнов, В.С. Автоматизированные системы обработки финансово-кредитной информации: учебник / В. С. Рожнов, Г. К. Бегоцкая - М.: Финансы и статистика, 2013. - 264 с.
Отрывок из работы

Основные понятия автоматизированных систем и способы их реализации Развитие систем информационного обеспечения различных видов деятельности человека, исторически можно представить этапами: «информационные системы» (ИС), «автоматизированные информационные системы» (АИС), «интеллектуальные информационные системы» (ИИС). Интеллектуальная информационная система – это компьютерная модель интеллектуальных возможностей человека в целенаправленном поиске, анализе и синтезе текущей информации об окружающей действительности для получения о ней новых знаний и решения на этой основе различных жизненно важных задач. Каждому из этих этапов соответствует своя информационная модель предметной области. Для первых информационных систем такой моделью служили каталоги или классификаторы, для АИС это были массивы информации, организованные в виде баз и банков данных, а для ИИС модель предметной области представлена системой структурированных данных, получившей название базы знаний. Информационные системы, основанные на каталогах, создавались в основном для реализации в той или иной мере механизированного поиска необходимой информации. АИС, основанные на высоко организованных базах данных, позволяли не только вести автоматизированный и многоаспектный поиск информации, но и достаточно сложную обработку найденной информации, ее организованное хранение и передачу. ИИС, основанные на базах знаний, должны (в дополнение к возможностям АИС) решать задачи, получившие название «интеллектуальных». [6] Развитие автоматизированных систем на современном этапе идет в соответствии с тремя направлениями исследований, целью которых – моделирование возможностей человека в решении интеллектуальных задач. Первое направление объектом исследований рассматривает структуру и механизмы работы мозга человека, а конечной целью – раскрытие тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование ранее созданных моделей и т. д. Второе направление в качестве объекта исследования рассматривает • искусственную интеллектуальную систему. Здесь речь идет о моделировании • интеллектуальной деятельности с помощью вычислительных машин или автоматов иного принципа действия. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных таких машин, позволяющего решать некоторые виды интеллектуальных задач так же, как их решил бы человек. Третье направление ориентировано на создание человеко-машинных, или, как еще говорят – интерактивных, интеллектуальных систем, являющих собой симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное сочетание возможностей человека и искусственной системы, моделирующей интеллектуальные возможности человека, и организация семантически безупречного диалога между человеком и такой системой. В рамках каждого из направлений существуют различные подходы к построению автоматизированных систем. Эти подходы не являются эволюционными этапами, они появились почти одновременно (в историческом плане) и самостоятельно существуют и развиваются в настоящее время. Более того, никогда не было достаточных оснований к тому, чтобы безоговорочно предпочесть какой-то подход остальным. [9] Практически каждая автоматизированных систем, основанная на логическом подходе, представляет собой машину для решения задач логических выводов и доказательства теорем. При этом исходные данные хранятся в базе знаний в виде аксиом и правил построения логического вывода как отношений между этими данными. Кроме того, каждая такая машина имеет блок генерации цели (формулировка задачи или теоремы), а система вывода (универсальный решатель) должна решить данную задачу или доказать теорему. Если сформулированная цель достигнута (теорема доказана), то последовательность примененных правил образует цепочку действий, позволяющих решать любые задачи подобного типа. Мощность такой системы определяется возможностями генератора целей и возможностями машины доказательства теорем (универсального решателя). Доказательство может потребовать полного перебора всех возможных вариантов решений. Поэтому данный подход требует эффективной реализации вычислительного процесса и хорошо «работает» при сравнительно небольшом объеме базы знаний. Физический подход объединяет методы моделирования интеллектуальных возможностей человека с помощью компьютера и различных физических устройств. Одной из первых таких попыток был перцептрон Фрэнка Розенблатта. Структурной единицей перцептрона (как и большинства других вариантов такого моделирования) является компьютерная модель нейрона – нервной клетки. Позднее возникли модели, которые получили известность под термином «искусственные нейронные сети» (ИНС). Эти модели относятся к структурам, основанным на примерах. Они используют как различные по физической реализации модели нервных клеток, так и различные топологии связей между ними. Широкое распространение получило в последние годы эволюционное моделирование. Принцип, лежащий в основе этого метода, заимствован у природы – у живых организмов и систем. Во многих источниках он определяется как воспроизведение процесса естественной эволюции с помощью специальных алгоритмов и программ. Еще одним, широко используемым методом этого подхода к построению ИИС является имитационное моделирование. Оно связано с классическим для кибернетики, одним из ее базовых понятий – «черным ящиком» (ЧЯ). Так называют устройство, информация о внутренней структуре и содержании которого отсутствуют полностью, но известна матрица обязательного соответствия сигналов на входе в него и сигналов на его выходе. Объект, поведение которого имитируется моделью, как раз и представляет собой такой «черный ящик». Нам не важно, что у него внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Так можно моделировать важное свойство человека — способность копировать то, что делают другие, не задумываясь, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни. Основным недостатком имитационного подхода является низкая информационность о побудительных мотивах поведения моделей, построенных с его помощью. [6] Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующие: – «Вывести список товаров, цена которых выше среднеотраслевой», – «Вывести список товаров-заменителей некоторой продукции», – «Вывести список потенциальных покупателей некоторого товара» и т.д. Для выполнения первого типа запроса необходимо сначала проведение статистического расчета среднеотраслевой цены по всей базе данных, а уже после этого собственно отбор данных. Для выполнения второго типа запроса необходимо вывести значения характерных признаков объекта, а затем поиск по ним аналогичных объектов. Для третьего типа запроса требуется сначала определить список посредников-продавцов, выполняющих продажу данного товара, а затем провести поиск связанных с ними покупателей. Во всех перечисленных типах запросов требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса. Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое. Естественно-языковый интерфейс используется для: • доступа к интеллектуальным базам данных; • контекстного поиска документальной текстовой информации; • голосового ввода команд в системах управления; • машинного перевода c иностранных языков. Гипертекстовые системы предназначены для реализации поиска, по ключевым словам, в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации. Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует, и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров). Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия. [9] 1. Использование автоматизированных систем в банковской сфере 2.1 Характеристика автоматизированных систем в банковской сфере Основным предназначением автоматизированных систем изначально было и будет исполнение роли «усилителя» интеллекта человека, дающего возможность решения проблемы, которая требует таких знаний, опыта и образа мышления, которых он не сумел, не считал нужным или не мог приобрести до того, как перед ним него возникла эта проблема. Чтобы ИИС любой типологической категории (ЭС, НС или гибридная) отвечала в полной мере такому назначению, необходимо, чтобы она обладала качествами (свойствами и возможностями) идеального помощника человека: честностью, понятливостью, восприимчивостью, дееспособностью, исполнительностью. Если перейти к понятиям более конкретным, то в терминах теории и практики построения ИСС эти качества трактуются как: – коммуникативность, трактуемая как многообразие доступных всем категориям пользователей способов общения с системой; – универсальность по отношению к множеству задач, составляющих проблемную область, в пределах задач которой должна функционировать стстема; – «умение» обучаться на основе приобретаемого опыта и знаний, приспосабливаясь к изменению условий решения проблемы; – «умение» перестроиться при изменении принципиальных положений (концепций) предметной (а значит – и проблемной) области. Коммуникативные качества ИИС определяются наличием в ее структуре аппаратно-программных средств, обеспечивающих возможность любому пользователю системы общаться с ней естественным для него способом. Это означает, что пользователь системы не должен «выбирать выражения», обращаясь к ней с тем или иным заданием, а делать это в привычной и удобной для себя манере. А система должна совершенно точно распознать смысл задания и приступить к его выполнению. Если задание выполнено, то система должна сообщить пользователю, как было получено решение и почему оно является именно таким. Коммуникативные функции реализуются в виде уточняющего диалога. Для того, чтобы диалог был возможен при выборе пользователем того или иного способа общения с системой (речевое обращение, запрос в виде текста, графический образ), в ее составе должны быть соответствующие аппаратные и программные средства. [7] Аппаратные средства преобразуют аналоговые сигналы в машинные цифровые коды (при вводе запроса) и цифровые коды в аналоговый сигнал (при выводе ответа). Программные средства осуществляют необходимую обработку информации, представленной в запросе к системе. Обработка запроса, изложенного на естественном языке (ЕЯ-запроса), предусматривает его лингвистический анализ (распознание синтаксической структуры и морфологии текста запроса), семантический анализ ЕЯ-запроса (распознание его смысла), лингвистическую и семантическую интерпретацию запроса в понятиях и терминах внутрисистемного языка описания знаний и описания всевозможных отношений между понятиями. После такого «перевода» запроса на «свой» язык, система решает поставленную в нем задачу. Эту функцию выполняет комплекс программ, реализующий алгоритмы процедур и правил, составляющих процедурную компоненту БЗ системы. Универсальность системы («умение» решать любые интеллектуальные задачи того класса, который определяется проблемной областью) обеспечивается наличием в структуре ее базы знаний соответствующей информации. Как уже было отмечено, база знаний системы состоит из декларативных и процедурных знаний. Первая компонента представлена информационной моделью предметной области, к которой относится класс задач, а вторая - набором логических процедур и правил, необходимых и достаточных для решения задач данного проблемного класса. Эти две компоненты, будучи информационно согласованными и совместимыми, должны обеспечивать решение любой типовой задачи данного класса. Если условия какой- либо задачи потребуют знаний или процедур, которых нет в базе системы, то факты (знания) и алгоритмы анализа и синтеза, которые в ней имеются, должны позволить получить их и решить задачу.
Не смогли найти подходящую работу?
Вы можете заказать учебную работу от 100 рублей у наших авторов.
Оформите заказ и авторы начнут откликаться уже через 5 мин!
Похожие работы
Курсовая работа, Банковское дело, 40 страниц
120 руб.
Курсовая работа, Банковское дело, 33 страницы
396 руб.
Курсовая работа, Банковское дело, 34 страницы
408 руб.
Курсовая работа, Банковское дело, 39 страниц
468 руб.
Курсовая работа, Банковское дело, 41 страница
492 руб.
Служба поддержки сервиса
+7(499)346-70-08
Принимаем к оплате
Способы оплаты
© «Препод24»

Все права защищены

Разработка движка сайта

/slider/1.jpg /slider/2.jpg /slider/3.jpg /slider/4.jpg /slider/5.jpg