Онлайн поддержка
Все операторы заняты. Пожалуйста, оставьте свои контакты и ваш вопрос, мы с вами свяжемся!
ВАШЕ ИМЯ
ВАШ EMAIL
СООБЩЕНИЕ
* Пожалуйста, указывайте в сообщении номер вашего заказа (если есть)

Войти в мой кабинет
Регистрация
ГОТОВЫЕ РАБОТЫ / КУРСОВАЯ РАБОТА, КРЕДИТ

Ипотека

rock_legenda 780 руб. КУПИТЬ ЭТУ РАБОТУ
Страниц: 65 Заказ написания работы может стоить дешевле
Оригинальность: неизвестно После покупки вы можете повысить уникальность этой работы до 80-100% с помощью сервиса
Размещено: 01.04.2022
Актуальность данной темы состоит в том, что с каждым годом, а особенно во время пандемии COVID-19 исследование ипотечного кредитования и его роли становится наиболее приоритетным направлением для выявления перспектив его развития в современных условиях. Цель работы - проанализировать использование математических методов для сравнительного анализа ипотечных кредитов. Задачи работы: ? изучить сущность понятие ипотечного кредитования; ? рассмотреть значение ипотечного кредитования в современных условиях; ? провести сравнительный анализ математических методов оценки ипотечных кредитов; ? выявить наиболее оптимальный метод выбора ипотечного кредита. В качестве объекта исследования выступает рынок ипотечного кредитования в России. Предмет исследования – математические методы оценки ипотечного кредитования. Теоретико-методологической основой курсовой работы послужили законодательные и иные нормативные акты, теоретические положения отечественных ученых и специалистов по ипотечному кредитованию, представленные в учебных пособиях, монографиях, статьях, материалах конференций, диссертациях.
Введение

Современный уровень создания технических систем требует от разработчика умения формулировать задачу исследования и осуществлять разработку такой системы, которая отвечала бы высоким техническим показателям, должна быть экономически обоснована, конкурентоспособна на рынке аналогичной технической продукции. Решение подобной задачи невозможно без использования современных достижений в области классической математики, математического моделирования, теории оптимального управления, системного анализа, современных информационных технологий и средств вычислительной техники. Одними из таких задач являются экономические задачи. Математические методы являются важнейшим инструментом анализа экономических явлений и процессов, построения теоретических моделей, позволяющих отобразить существующие связи в экономической жизни, прогнозировать поведение экономических субъектов и экономическую динамику. Математика как основа теории принятия решений широко применяется для управления экономическими объектами и процессами. Например, для выбора программ кредитования. В настоящее время кредиты стали неотъемлемой частью жизни многих людей. Кредиты позволяют человеку достичь желанных целей уже сегодня. Взять кредит наличными или иной вид кредита в банке – это просто, но не всегда бывает выгодно. По мере развития в России банковского сектора большую популярность приобрели ипотечные кредиты. Данный вопрос является актуальным в наши дни, так как многие взрослые люди хоть раз задумывались о возможностях использования данного банковского продукта. У ипотеки, как и у других форм кредитования, есть свои плюсы и минусы, хотя люди, задумываясь о приобретении собственного жилья, все же останавливаются на выборе ипотечного кредитования. Роль ипотечного кредитования в России трудно переоценить, так как обеспечение населения жильём является одной из самых острых социальных проблем. В России жилье является дорогостоящим объектом и купить квартиру для многих россиян, живущих на заработную плату, практически невозможно. Ипотека довольно привлекательна для населения, поскольку позволяет получить жильё в пользование уже на начальном этапе. Кроме того, ипотека содержит в себе огромный потенциал экономического развития, развития кредитной системы. Она позволяет недвижимости превращаться в рабочий капитал, дающий возможность кредиторам получить гарантированный доход, а населению - финансировать покупку жилья. Таким образом, проблема развития системы ипотечного кредитования в России является актуальной в социально- экономическом плане Ипотека по своей специфике может быть признана в качестве единственного эффективного механизма поддержания спроса на жилье. Дальнейшее совершенствование ипотечного кредитования представляется крайне важным и необходимым для государственной жилищной политики, целью которой является достижения эффективности функционирования рынка жилья. Увеличение объемов жилья тесно связано с созданием рабочих мест, что в свою очередь положительно влияет на экономику страны, а также влияет на развитие конкуренции в области строительства и на рынке ипотечного кредитования. Сегодня реальные доходы граждан не растут. Это официальная информация, подтвержденная данными Росстата. Более того, по итогам прошлого года зафиксировано снижение доходов. В данном ракурсе остро стоит вопрос государственной помощи в данной области.
Содержание

Введение 3 Глава 1. Характеристики ипотечного кредитования 6 1.1 Характеристика ипотечного кредитования 6 Глава 2. Обзор математических методов принятия решений 12 2.1 Методы экспертных оценок 12 2.2 Метод последовательных сравнений 16 2.3 Метод парных сравнений 18 2.4 Метод анализа иерархий 21 3. Расчетная часть курсового проекта 29 3.1. Расчет показателей эффективности инвестиционного проекта. 29 3.2. Оптимизация портфеля ценных бумаг. Задача Г. Марковица 34 3.3 Задача Марковица без ограничения на не отрицательность 37 3.4 Задача Марковица с ограничением на не отрицательность 39 3.5 Построение оптимального портфеля ценных бумаг при рискованных и без рисковых вложений. Задача Д. Тобина. 42 3.6 Численное решение с помощью Excel без ограничений на не отрицательность 44 3.7 Численное решение с помощью Excel с ограничением на не отрицательность 46 3.8 Статистика фондового рынка. Расчет исходных данных для построения оптимального портфеля ценных бумаг. 49 3.9 Построение оптимального портфеля ценных бумаг при рискованных вложениях (Задача Г. Марковица. Численное. Решение в Excel). 52 3.10 Задача об осторожном инвесторе и Задача Марковица без ограничения на не отрицательность 53 3.11 Задача об осторожном инвесторе и Задача Марковица с ограничением на не отрицательность 55 3.12 Задача Тобина без ограничения на не отрицательность 56 3.13 Задача Тобина с ограничением на не отрицательность 59 3.14 Бета вклады 60 Заключение 64 Список литературы 65
Список литературы

1. Войтишек Я.В. Финансовая математика: учебное пособие. – СПБ.: Изд-во СПБГУ, 2016. – 63 с. 2. Глухов В.В. Математические методы и модели для менеджмента. - СПб.: Питер, 2002. - 675 с. 3. Клоков В. И. Инвестиции: учебное пособие. – СПб.: Изд-во СЗАГС, 2009. –212 с. 4. Козырев Е.С. Информационные технологии в экономике и управлении. - СПб.: Питер, 2002. - 388 с. 5. Крас?ков, А.Ж?лье в кред??. [Текст] / А. Крас?ков // Твой новый дом. - 2014.- № 10. – С. 35-36. 6. Кузнецов А.В. Экономико-математические методы и модели. - М.: Норма, 2002. - 524 с.
Отрывок из работы

Глава 1. Характеристики ипотечного кредитования 1.1 Характеристика ипотечного кредитования Ипотечный кредит — это деньги, выдаваемые банком под залог недвижимости. Это означает, что заемщик до момента завершения платежей по кредиту не сможет продать, обменять или сдать заложенный объект без согласия банка. Чаще всего целью ипотечного кредита является покупка квартиры, дома, дачи, земли или других объектов на первичном или вторичном рынке. В силу больших сумм, ставки по ипотеке обычно ниже, чем по другим видам кредитов, но бремя, которое ипотека возлагает на плечи заемщика гораздо серьезней, поскольку выплаты могут длиться годами, в течение которых сохраняется риск потерять купленное имущество. Условия предоставления ипотеки – это параметры сделки, которые устанавливает банк. К таковым относятся: валюта, сумма и срок кредита, уровень первоначального взноса и процентной ставки, наличие дополнительных платежей в виде комиссий, обязательное и добровольное страхование, перечень необходимых документов, размер ежемесячных платежей и т.п. Перед подписанием кредитного договора заемщику следует внимательно изучить все условия кредита и тщательно взвесить свои возможности. Нужно отметить, что система ипотечного жилищного кредитования обеспечивает взаимосвязь не только финансового и инвестиционного рынков, в части привлечения средств посредством перераспределения финансового капитала и создания фондовых механизмов, как указывается другими авторами, но и жилищного рынка, в части финансирования строительства и приобретения жилой недвижимости с использованием института ипотеки. Классификацию основных ипотечных кредитов в России можно представить в следующей схеме (см. рис. 1). Рис. 1. Классификация основных ипотечных кредитов в России Самый распространенный вариант использования ипотеки в России — это покупка физическим лицом квартиры в кредит. Закладывается при этом, как правило, вновь покупаемое жилье, хотя можно заложить и уже имеющуюся в собственности квартиру. Нужно отметить, что ипотека — это публичный залог. При ипотеке недвижимости, органы, регистрирующие сделки, делают соответствующие записи о том, что имущество обременено залогом. Любое заинтересованное лицо может потребовать выписку из Государственного реестра прав на недвижимое имущество и сделок с ним. В этой выписке, если имущество заложено, обязательно будет указано, что имеется обременение: залог. По способам выдачи выделяю два вида кредитов: 1 Кредиты, финансирующие строительство жилья поэтапно; 2 Кредиты, выданные одной суммой. Кредит, выданный на строительство жилья, выдается только на время строительства дома, а именно на 1?1,5 года. Обеспечить займ могут: денежные активы заёмщика, участок земли, находящийся в собственности заемщика, поручительства, гарантии. Выдача кредита происходит по частям в соответствии с этапами строительства. Проценты начисляются на фактически имеющуюся задолженность по кредиту. При строительстве заемщик выплачивает только проценты по кредиту. Бывают случаи, что на практике используют вариант, когда при строительстве происходит начисление процентов, но заемщик их не выплачивает, а они суммируются с остатком основного долга и капитализируются. По окончанию строительства происходит модификация кредита на жильё в долгосрочное ипотечное кредитование, который обеспечивается выстроенным домом и участком земли. На погашение такого кредита уходит от 15 до 30 лет. По способам погашения выделяют шесть кредитов ипотеки: 1. Кредит с «шаровым» платежом, который заключается в выплате всего размера кредита либо его части, т.е. «шаровой» платеж в окончании срока кредитования. 2. Кредит с переменной ставкой по процентам. 3. Постоянный кредит, который также называется аннуитетным. Это кредит с фиксированной ставкой по процентам, который самоамортизируется, и по которому предусмотрены равные ежемесячные платежи. Периодический платеж включает выплату в счет погашения долга и уплату процентов по кредиту. 4. Кредит с участием – это кредит, при котором кредитор участвует в инвестировании: кредитор одновременно получает платежи по кредиту и определенную часть регулярного дохода, и (или) часть от суммы увеличения стоимости собственности. 5. Кредит с нарастающими платежами, использующийся для заемщиков, которые рассчитывают на увеличение доходов. 6. Кредит с обратным аннуитетом, который заключается в уменьшении выплат по кредиту в конце срока либо полное прекращение выплат. Широкое использование кредита является необходимым условием нормального функционирования экономики любого государства и невозможно без серьёзного обеспечения интересов кредитора. Наиболее эффективно эти интересы могут быть защищены посредством использования сторонами залога недвижимости (ипотеки), поскольку : ? недвижимость сравнительно мало подвержена риску гибели или внезапного исчезновения, а её наличие легко проверяется; ? недвижимость обладает осложнённой работоспособностью (связанной с необходимостью регистрации сделок с ней в государственных органах), что позволяет кредитору легко проконтролировать либо вообще запретить её отчуждение; ? стоимость недвижимости имеет тенденцию к постоянному росту, что даёт кредитору гарантии полного погашения задолженности; ? высокая стоимость недвижимости и риск её потери являются мощным стимулом, побуждающим должника к точному и своевременному исполнению своих обязательств. Ипотека и кредитование на покупку квартиры – многие не видят различий между этими понятиями. На самом же деле они означают далеко не одно и то же. В обиходе этим выражениям придают одинаковое значение. Если конкретно, то обычными людьми, неискушенными в финансовых вопросах, под ними понимается: «выдача кредита на покупку жилья». Но в банковской деятельности этим понятиям придается абсолютно разное значение. Ипотека в кредитовании – это обеспечение залогом денежного займа, выданного банком, или просто залог. Объектом залога чаще всего выступает какая-либо недвижимость, причем не обязательно у нее должно быть жилое назначение. Реже, в качестве предмета залога или обеспечения кредита используется дорогостоящий ликвидный автомобиль или спецтехника, а также ценные бумаги (акции, облигации). Не только банковский заем на жилье может обеспечиваться ипотекой, но также и любой потребительский кредит. Разница будет лишь в назначении выданного банком займа. К примеру, его можно взять на строительство дачного дома или на покупку земельного участка. Обеспеченная ссуда вообще может быть оформлена без целевого назначения. Полученные банковские инвестиции можно, в этом случае, направить на оплату дорогостоящей операции либо потратить на заграничную поездку. Выражение «ипотечное кредитование» означает банковскую деятельность, направленную на предоставление населению, а также коммерческим предприятиям разнообразных займов с залоговым обеспечением (ипотекой). Причем формой залога или ипотекой может выступать, как уже имеющаяся у клиента в собственности недвижимость, так и приобретаемое на деньги банка жилье. Нужно отметить, что и слово «ипотека», и словосочетание «ипотечное кредитование» не имеют значение: «получение заемных банковских средств (кредита) на покупку жилья». Сам кредит с залоговым обеспечением является продуктом ипотечного кредитования. Ипотечное кредитование – это более широкое понятие, чем жилищное кредитование. Ипотекой или залогом может обеспечиваться далеко не один тип продуктов ипотечного кредитования. Главным преимуществом ипотеки является то, что, вместо многолетнего накапливания необходимой суммы на покупку жилья, возникает возможность уже сейчас жить в новой квартире (или доме). При этом жилье, приобретенное по ипотеке, сразу является собственностью заемщика ипотечного кредита. В новом жилье можно зарегистрироваться заемщику и членам его семьи. Безопасность операции обеспечивается страхованием рисков утраты права собственности на квартиру и ее повреждения, а так же потери заемщиком трудоспособности. Кроме того, у ипотеки есть еще ряд «плюсов»: заемщику ипотечного кредита предоставляется имущественный налоговый вычет, который фактически снижает процентную ставку по ипотеке за счет того, что заемщик не будет платить подоходный налог с суммы, потраченной на покупку жилья и с процентов по ипотеке; длительный срок кредитования делает платежи по ипотеке не слишком большими и, следовательно, не слишком обременительными. Самым существенным недостатком ипотеки является так называемая «переплата» за квартиру, которая может достигать 100% и более. «Переплата» по ипотеке включает в себя проценты по ипотечному кредиту и ежегодные суммы обязательного страхования. Кроме того, в процессе получения ипотечного кредита заемщику приходится нести еще некоторые дополнительные расходы, такие как оплата услуг оценочной компании и нотариуса, плата банку за рассмотрение заявки на кредит, сбор за ведение ссудного счета и т.п. В совокупности накладные расходы составляют 5-10% стоимости приобретаемого жилья. Еще один «минус» ипотеки - большое количество требований ипотечных банков к заемщикам: документальное подтверждение доходов, наличие регистрации и российского гражданства, определенный стаж работы на одном месте, положительная кредитная история, возможность представить поручителей по кредиту и т.д. Глава 2. Обзор математических методов принятия решений 2.1 Методы экспертных оценок Задачи прогнозирования, решаемые с помощью методов экспертных оценок, включают два формально не связанных между собой элемента: определение возможных вариантов развития объекта прогнозирования и их оценку. Анализ экспертных методов показывает целесообразность применения "мозговых атак" для определения возможных вариантов развития. Их использование позволяет получить продуктивные результаты за короткий период времени и вовлечь всех экспертов в активный творческий процесс. Сущность методов экспертных оценок для разработки прогнозов состоит в определении согласованности мнений экспертов по перспективным направлениям развития объекта прогнозирования, сформулированным ранее отдельными специалистами, а также в оценке аспектов развития объекта, которая не может быть определена другими методами (например, аналитическим расчетом, экспериментом и т.д.). Содержание методов экспертных оценок заключается в следующем I. Создание групп. Для организации проведения экспертных оценок создаются рабочие группы, в функции которых входят проведение опроса, обработка материалов и анализ результатов коллективной экспертной оценки. Рабочая группа назначает экспертов, которые дают ответы на поставленные вопросы, касающиеся перспектив развития данной отрасли. Количество экспертов, привлекаемых для разработки прогноза, может колебаться от 10 до 150 человек, в зависимости от сложности объекта. II. Формулирование глобальной цели системы. Перед тем, как организовать опрос экспертов, необходимо уточнить основные направления развития объекта, а также составить матрицу, отражающую генеральную цель, подцели и средства их достижения. При этом в ходе предварительного анализа совместно с группой специалистов определяются наиболее важные цели и подцели для решения поставленной задачи. Под средствами достижения цели понимаются направления научных исследований и разработок, результаты которых могут быть использованы для достижения цели. При этом направления научных исследований и разработок не должны пересекаться друг с другом. III. Разработка анкеты. Заключается в разработке вопросов, которые будут предложены экспертам. Форма вопроса может быть разработана в виде таблиц, но содержание их должно определяться спецификой прогнозируемого объекта или отрасли. При этом вопросы должны быть составлены по определенной структурно-иерархической схеме, т.е. от широких вопросов к узким, от сложных к простым. При проведении опроса экспертов необходимо обеспечить однозначность понимания отдельных вопросов, а также независимость суждений экспертов. IV. Расчёт экспертных оценок. Необходимо провести обработку материалов экспертных оценок, которые характеризуют обобщенное мнение и степень согласованности индивидуальных оценок экспертов. Обработка данных оценок экспертов служит исходным материалом для синтеза прогнозных гипотез и вариантов развития отрасли. Окончательная количественная оценка определяется с помощью четырех основных методов экспертных оценок и множества их разновидностей: 1)метод простой ранжировки (или метод предпочтения); 2)метод задания весовых коэффициентов; 3)метод парных сравнений; 4)метод последовательных сравнений. Метод простой ранжировки заключается в том, что каждого эксперта просят расположить признаки в порядке предпочтения. Цифрой один обозначается наиболее важный признак, цифрой два – следующий за ним по важности и т.д. полученные данные сводятся в следующую таблицу. Таблица 2 - Экспертные оценки признаков - порядок предпочтения данного признака перед другими. Затем с помощью методов математической статистики получают обобщенное мнение экспертов. Определяется средний ранг, среднее статистическое значение Sj j-го признака: где mkj - количество экспертов, оценивающих j-й признак (mk m); i - номер эксперта; i = 1,…,m; j - номер признака, j = 1,2,…,n. Определяется средний ранг каждого признака. Чем меньше величина Sj, тем больше важность этого признака. Для того чтобы можно было сказать, случайно ли распределение рангов или имеется согласованность в мнениях экспертов, производится вычисление коэффициента конкордации , введенного М. Кендаллом. Определяется средний ранг совокупности признаков: ? Вычисляется отклонение dj среднего ранга j-го признака от среднего ранга совокупности : Определяется число одинаковых рангов, назначенных экспертами j-му признаку – tq. Определяется количество групп одинаковых рангов – Q. Определяется коэффициент конкордации по формуле: Коэффициент может принимать значения в пределах от 0 до 1. При полной согласованности мнений экспертов коэффициент конкордации равен единице при полном разногласии – нулю. Наиболее реальным является случай частичной согласованности мнений экспертов. По мере увеличения согласованности мнений экспертов коэффициент конкордации возрастает и в пределе стремится к единице. Однако даже если он равен или близок к нулю, не всегда имеет место полное разногласие. Среди экспертов могут быть группы с хорошо согласованными мнениями, но мнения эти – противоположны и в общей массе нейтрализуют друг друга. В таком случае следует проделать кластерный или комбинированный анализ для выявления этих групп. Достоинства метода простой ранжировки: 1) сравнительная простота процедуры получения оценок; 2) меньшее число экспертов по сравнению с другими методами при оценке одного и того же набора признаков. Недостаток же его в том, что: 1) заведомо считают распределение оценок равномерным; 2) уменьшение важности признаков предполагается также равномерным, в то время как на практике этого не бывает. Метод задания весовых коэффициентов заключается в присвоении всем признакам весовых коэффициентов. Весовые коэффициенты могут быть проставлены двумя способами: 1) всем признакам назначают весовые коэффициенты так, чтобы суммы коэффициентов была равна какому-то фиксированному числу (например, единице, десяти или ста); 2) наиболее важному из всех признаков придают весовой коэффициент, равный какому-то фиксированному числу, а всем остальным – коэффициенты, равные долям этого числа. 2.2 Метод последовательных сравнений 1) эксперт упорядочивает все признаки в порядке уменьшения их значимости: А1>A2>…>An ; 2) присваивает первому признаку значение, равное единице: A1=1, остальным же признакам назначает весовые коэффициенты в долях единицы; 3) сравнивает значение первого признака с суммой всех последующих. Возможны три варианта: A1 >A2 + A3 + … + An A1 = A2 + A3 + … + An A1 < A2 + A3 + …+ An Эксперт выбирает наиболее соответствующий, по его мнению, вариант и приводит в соответствие с ним оценку первого события; 4) сравнивает значение первого признака с суммой всех последующих за вычетом самого последнего признака. Приводит оценку первого признака в соответствие с выбранным из трех вариантов неравенством: A1 > A2 + A3 + … + An-1 A1 = A2 + A3 + … + An-1 A1 < A2 + A3 + … + An-1 5) процедура повторяется до сравнения A1 с A2 + A3. После того как эксперт уточнил оценку первого признака в соответствии с выбранным им неравенством из трех возможных: A1 > A2 + A3 A1 = A2 + A3 A1 < A2 + A3 он переходит к уточнению оценки второго признака A2 по той же схеме, что и в случае первого, т.е. сравнивается оценка второго признака с суммой последующих. Преимущество его состоит в том, что эксперт в процессе оценивания признаков сам анализирует свои оценки. Вместо назначения коэффициентов возникает творческий процесс создания этих коэффициентов. Недостатки метода таковы: 1) сложность его; неподготовленный эксперт будет с трудом справляться с этой процедурой; вместо того, чтобы уточнять свои первоначальные оценки, он будет путаться в них; 2) громоздкость; на оценку одного и того же набора признаков он требует в четыре раза больше операций, чем метод простой ранжировки (другими словами, для одной и той же работы нужно в четыре раза больше экспертов). 2.3 Метод парных сравнений Согласно ему все признаки попарно сравниваются между собой. На основании парных сравнений путем дальнейшей обработки находятся затем оценки каждого признака. Чтобы эксперту было удобнее проводить сравнения, признаки (A,B,C,…N) заносятся в таблицу и по горизонтали и по вертикали. Эксперт заполняет клетки такой таблицы. Сравнение признака самого с собой дает единицу. В первой клетке эксперт пишет единицу, во второй – результат сравнения первого признака со вторым, в третьей – результат сравнения первого признака с третьим и т.д. Переходя ко второй строке, эксперт записывает в первой клетке результат сравнения второго признака с первым, во втором – единицу, в третьей – сравнение второго признака с третьим и т.д. Половина таблицы, расположенная выше диагонали, служит отражением нижней половины. Чтобы не вносить путаницу, не провоцировать эксперта вычислять одну половину таблицы по другой, чтобы уменьшить число операций, целесообразно заполнять только одну половину таблицы (выше или ниже диагонали). Таким образом, ответы экспертов будут представлены в виде следующей матрицы: После ряда математических преобразований мы получаем оценки каждого признака А1, А2,, … ,Аn с точки зрения данного эксперта. Суммарные оценки признаков получаются путем идентичной обработки суммарной матрицы, каждый элемент которой есть сумма сравнений признаков, данных всеми экспертами. Суммарная матрица имеет вид m – число экспертов, оценивающих данный набор признаков; - оценки соответственно 1, 2, …, j, …, m экспертов; - суммарные оценки, данные всеми экспертами. Определяя дисперсию суммарной матрицы и сравнивая её с максимально возможной дисперсией матрицы с таким же числом элементов, можно определить согласованность мнений экспертов. Чем ближе дисперсия суммарной матрицы к максимально возможной дисперсии, тем выше согласованность мнений. Таким образом, метод парных сравнений позволяет провести строгий, статистически обоснованный анализ согласованности мнений экспертов, выявить, случайны или нет полученные оценки. Несомненно, процедура метода парных сравнений сложнее метода простой ранжировки, но проще метода последовательных сравнений. Число экспертов, требуемое для оценки определенной совокупности признаков методом парных сравнений, в два раза больше, чем при использовании метода простой ранжировки, и в два раза меньше, чем при методе последовательных сравнений. В настоящее время во многих методах проведения экспертных оценок предлагается в качестве показателя компетентности эксперта коэффициент: где - коэффициент компетентности эксперта; - коэффициент степени знакомства эксперта с обсуждаемой проблемой; - коэффициент аргументированности. Коэффициент степени знакомства с направлением исследований определяется путем самооценки эксперта по десятибалльной шкале. Значения баллов для самооценки следующие: 0 - эксперт не знаком с вопросом; 1,2,3 - эксперт плохо знаком с вопросом, но вопрос входит в сферу его интересов; 4,5,6 - эксперт удовлетворительно знаком с вопросом, не принимает непосредственного участия в практическом решении вопроса; 7,8,9 – эксперт хорошо знаком с вопросом, участвует в практическом решении вопроса; 10 – вопрос входит в круг узкой специализации эксперта. Эксперту предлагается самому оценить степень своего знакомства с вопросом и подчеркнуть соответствующий балл. Затем этот балл умножается на 0,1, и получаем коэффициент . Коэффициент аргументированности учитывает структуру аргументов, послуживших эксперту основанием для определенной оценки. Коэффициент аргументированности предлагается определить в соответствии с таблицей 2.2 путем суммирования значений, отмеченных экспертом в клетках этой таблицы. Определив коэффициент компетентности, умножают на него значение оценок экспертов. Таблица 2 - Значения коэффициента аргументированности 2.4 Метод анализа иерархий Математический инструмент системного подхода к сложным проблемам принятия решений. МАИ не предписывает лицу, принимающему решение, какого-либо "правильного" решения, а позволяет ему в интерактивном режиме найти такой вариант (альтернативу), который наилучшим образом согласуется с его пониманием сути проблемы и требованиями к ее решению. МАИ широко используется на практике и активно развивается учеными всего мира. В его основе наряду с математикой заложены и психологические аспекты. МАИ позволяет понятным и рациональным образом структурировать сложную проблему принятия решений в виде иерархии, сравнить и выполнить количественную оценку альтернативных вариантов решения. Метод Анализа Иерархий используется во всем мире для принятия решений в разнообразных ситуациях: от управления на межгосударственном уровне до решения отраслевых и частных проблем в бизнесе, промышленности, здравоохранении и образовании. Для компьютерной поддержки МАИ существуют программные продукты, разработанные различными компаниями. Анализ проблемы принятия решений в МАИ начинается с построения иерархической структуры, которая включает цель, критерии, альтернативы и другие рассматриваемые факторы, влияющие на выбор. Эта структура отражает понимание проблемы лицом, принимающим решение. Каждый элемент иерархии может представлять различные аспекты решаемой задачи, причем во внимание могут быть приняты как материальные, так и нематериальные факторы, измеряемые количественные параметры и качественные характеристики, объективные данные и субъективные экспертные оценки. Иными словами, анализ ситуации выбора решения в МАИ напоминает процедуры и методы аргументации, которые используются на интуитивном уровне. Следующим этапом анализа является определение приоритетов, представляющих относительную важность или предпочтительность элементов построенной иерархической структуры, с помощью процедуры парных сравнений. Безразмерные приоритеты позволяют обоснованно сравнивать разнородные факторы, что является отличительной особенностью МАИ. На заключительном этапе анализа выполняется синтез (линейная свертка) приоритетов на иерархии, в результате которой вычисляются приоритеты альтернативных решений относительно главной цели. Лучшей считается альтернатива с максимальным значением приоритета. Пример задачи многокритериального выбора с простейшей иерархией В данной задаче необходимо выбрать из трех кандидатов одного на должность руководителя. Кандидаты оцениваются по критериям: возраст, опыт, образование и личные качества.
Условия покупки ?
Не смогли найти подходящую работу?
Вы можете заказать учебную работу от 100 рублей у наших авторов.
Оформите заказ и авторы начнут откликаться уже через 5 мин!
Похожие работы
Курсовая работа, Кредит, 39 страниц
500 руб.
Курсовая работа, Кредит, 22 страницы
500 руб.
Курсовая работа, Кредит, 45 страниц
400 руб.
Служба поддержки сервиса
+7 (499) 346-70-XX
Принимаем к оплате
Способы оплаты
© «Препод24»

Все права защищены

Разработка движка сайта

/slider/1.jpg /slider/2.jpg /slider/3.jpg /slider/4.jpg /slider/5.jpg