Войти в мой кабинет
Регистрация
ГОТОВЫЕ РАБОТЫ / КУРСОВАЯ РАБОТА, ЭКОЛОГИЯ

Радиоэкологическое состояние Казахстана.

one_butterfly 504 руб. КУПИТЬ ЭТУ РАБОТУ
Страниц: 42 Заказ написания работы может стоить дешевле
Оригинальность: неизвестно После покупки вы можете повысить уникальность этой работы до 80-100% с помощью сервиса
Размещено: 04.07.2021
Целью моей работы является изучения источников радиации, влияние радиации на организм человека и природу в целом. Задачи: 1. Охарактеризовать источники радиации и ее влияние на живые организмы 2. Изучить влияние ядерных полигонов на жизнь населения РК 3. Рассмотреть законодательную базу, направленную на регулирования радиационного загрязнения.
Введение

Радиация - это одно из немногих величественных открытий человечества. Человек научился подчинять себе эту огромную силу. Как и бывает в жизни люди стали использовать эту силу не только во благу но и во вред. За довольно короткий срок человек с помощью радиации нанес непоправимый вред природе. Человек смог создать смертоносное оружие, которое смогло создать техногенную катастрофу. Почти за век в мире случилось несколько больших выбросов радиации. Самое крупное и большое - это авария на Чернобыльской АЭС. Из-за человеческой ошибки и не понимания всей угрозы, огромные территории были заражены и жить сейчас на них не возможно. В истории Казахстана тоже были трагические случаи. На территории Северной, Восточной и Карагандинской областях был расположен Семипалатинский ядерный полигон. Он работал на протяжение 42 лет. За этот период пострадали местные жители и вся экосистема региона.
Содержание

ВВЕДЕНИЕ…………………………………………………………………3 1.РАДИАЦИОННОЕ ЗАГРЯЗНЕНИЕ………………………………………………................................5 1.1. Общая характеристика изотопов………………….……….......................5 1.2. Общая характеристика радиационного загрязнения……………….…………….……….…………………….................9 1.3. Источника радиационного загрязнения..................................................... 2. РАДИАЦИОННОЕ СОСТОЯНИЕ РЕСПУБЛИКИ КАЗАХСТАН…..…………………………………………………….……….12 2.1. Причины радиационного загрязнения в Республике Казахстан…….………12 2.2. Общая характеристика радиационного состояние Республики Казахстан…………………………………………….……………………19 2.3. Влияние иностранных полигонов на радиационное состояние РК.................................................................................................................. 2.4. Законодательная база по наблюдению за радиационное обстановки в РК.................................................................................................................. 3. ПУТИ РЕШЕНИЯ НАПРАВЛЕННЫЕ НА СНИЖЕНИЯ РАДИАЦИИ В КАЗАХСТАНЕ……………………………………………………………........22 3.1 Мероприятия, направленные на улучшения радиационной обстановки - мировой опыт……………………………………………………………….…..…22 3.2 Отечественные мероприятия, направленные на улучшения радиационной обстановки……………………………..……………..……………………….........26 ЗАКЛЮЧЕНИЕ…………………………………………………………….30 СПИСОК ЛИТЕРАТУРЫ…………..…………...........................................32
Список литературы

1. Данилов-Данильян В. И., Лосев К. С. Экологический вызов и устойчивое развитие: Учебное пособие. – М.: Прогресс-Традиция, 2010-418 с. 2. Кондратьев К. Я. Экодинамика и геополитика. Т. 1. Глобальные проблемы / К. Я. Кондратьев, В. К. Донченко. – СПб, 2011. – 1032 с. 3. Кузин А. М. Прикладная радиобиология (теоретические и технические основы) / А. М. Кузин, Д. А. Каушанский. – М.: Энергоиздат, 2010. – 224 с. 4. Кузин А. М. Природный радиоактивный фон и его значение для биосферы Земли / А. М. Кузин. – М.: Наука, 2012. – 117 с. 5. Мазур И. И. Инженерная экология: общий курс. В 2-х т. Т. 2. Справочное пособие / И. И. Мазур, О. И. Молдаванов, В. Н. Шишов; Под. ред. И. И. Мазура. – М.: Высшая школа, 2010. – 655 с. 6. Gamo M. Ranking the risks of 12 major environmental pollutants that occur in Japan / M. Gamo, T. Oka, J. Nakanishi // Chemosphere. – 2011. – Vol. 53. – P. 277-284.
Отрывок из работы

I. РАДИАЦИОННОЕ ЗАГРЯЗНЕНИЕ 1.1. Общая характеристика изотопов Изотопы – это атомы элемента с одним и тем же атомным номером, но с различными атомными массами. Термин «изотоп» предложил Содди в 1918 г. для обозначения двух или более веществ с разной массой, занимающих одно и то же место в периодической таблице. Известно 340 естественных изотопов элементов. По принципу четности нейтронов и протонов все изотопы могут быть разделены на 4 типа: Четное Четное (166 изотопов) Нечетное (55 изотопов) Нечетное Нечетно-четные (47 изотопов) Нечетно-нечетные (5 изотопов) Табл.1 Эти и другие аномалии были объяснены с открытием радиоактивности. Радиоактивность – самопроизвольный переход ядер нестабильных атомов в более стабильное состояние. В результате изменений в ядрах атомов выделяется излучение: • ?-лучи (ионы гелия); • ?-лучи (электроны); • ?-лучи (электромагнитные волны). Удаление ?-частицы из ядра смещает атомный номер в периодической таблице на 2 позиции влево. Массовое число элемента при этом уменьшается на 4 единицы. При ?–распаде массовое число не изменяется. При обычном ?-распаде нейтрон превращается в протон с выделением электрона, а атомный номер элемента увеличивается на единицу. При электронном захвате протон переходит в нейтрон в результате перемещения электрона их К-оболочки атома в ядро. Атомный номер при этом уменьшается на единицу, ?-излучение отсутствует, но выделяются Х-лучи. ?-лучи испускаются при возвращении ядра из возбужденного состояния в обычное состояние. Все три вида излучения являются ионизирующими и способны наносить повреждения биологическим объектам (лучевая болезнь, мутации, образование злокачественных опухолей). Наибольшей проникающей способностью обладает ?-излучение. Наибольшую опасность из радиоактивных элементов представляют те, у которых период полураспада составляет от нескольких недель и месяцев до нескольких лет, поскольку короткоживущие изотопы распадаются быстро и не успевают принести существенного вреда, а долгоживущие – слабо радиоактивны. Серьезную проблему представляют стронций–90 и цезий–137 благодаря своей способности к накоплению в человеческом организме. Стронций благодаря своему химическому сходству с кальцием очень легко проникает в костную ткань позвоночных, а цезий может накапливаться в мускулах, замещая калий. Фоновое содержание стронция–90 в почвах составляет 28 г т-1, в почвах крупных городов – 44 г т-1. Содержание цезия–137 в воздухе составляет (пг м-3): 20 (Норвегия), 40 (Гренландия), 60–1500 (ФРГ), 16–1500 (Япония), 70–300 (США, Канада). В организм человека цезий и стронций попадают с пищей. Средние содержания их в культурных растениях приведено в таблице 2 (один Бк соответствует одному распаду в сек). Культура 90Sr 137Cs Пшеница (зерно) 2,849 10,730 Рожь (зерно) 2,701 7,400 Ячмень (зерно) 3,108 6,290 Морковь 0,555 1,887 Капуста 0,469 2,109 Картофель 0,185 1,406 Свекла 0,666 1,702 Яблоко 0,333 1,998 Таб.2 Надо отметить, что опасность ионизирующей радиации для живых существ зачастую преувеличивается. Во-первых, она имеет пороговый уровень, ниже которого воздействие радиации на организмы не является вредным. Во-вторых, малые дозы радиации могут быть полезными (так называемый «эффект хормезиса»). Так, исследования воздействия малых доз радиации на животных показали, что продолжительность жизни облученных мышей, крыс, собак оказалась дольше, они были более здоровыми и приносили более многочисленное потомство, чем животные, не подвергавшиеся облучению. Сходные данные получены и для человека. При малых дозах гамма излучения и быстрых нейтронов наблюдалось усиление роста водорослей, увеличение продолжительности жизни мышей и морских свинок. Хормезис проявляется в стимулировании восстановления ДНК, синтезе белков, образовании антистрессорных белков, обезвреживании свободных радикалов, стимулировании иммунной системы. У млекопитающих обнаружено усиление защитных реакций по отношению к опухолевым и инфекционным заболеваниям, в частности, лейкемией, раком и саркомой. В сельском хозяйстве, например, ионизирующие излучения используются для повышения всхожести семян, ускорения развития и повышения урожая растений, лучшей прививаемости черенков, повышения яйценоскости кур, стимуляции оплодотворяемости и выхода мальков в рыбоводстве. При обследовании жертв атомных бомбардировок Хиросимы и Нагасаки выяснилось, что у людей, подвергшихся облучению на уровне 100 мЗв (1 мЗв эквивалентен разрушению одной молекулы ДНК в одной клетке тела человека. Природно-обусловленное разрушение ДНК имеет скорость порядка 70 млн. год–1), смертность от лейкемии была меньше, чем у контрольной группы. В Норвегии природный радиоактивный фон обеспечивает среднюю дозу облучения людей за время жизни 365 мЗв, в некоторых местностях – до 1500 мЗв, в Индии и Иране есть районы, где эта доза возрастает до 2000 и 3000 мЗв, соответственно (Кондратьев, 1999). В России пороговым уровнем считается 70 мЗв (до 1991 г. был принят уровень 50 мЗв). Многие курорты (например, в горах Швейцарии, Кавказа, Памира, Колорадо), наряду с благоприятными климатическими факторами, как правило, включают и фактор повышенного природного радиоактивного фона. Всемирно известные курорты Браубах, Висбаден, Баден-Баден (Германия), Бадгастайн (Австрия), Масутами-Спрингс (Япония), Цхалтубо, Пятигорск, Белокуриха и многие другие возникли вокруг источников с повышенным содержанием радона. 1.2. Общая характеристика радиационного загрязнения Радиационное загрязнение – наиболее опасный вид физического загрязнения окружающей среды, связанный с воздействием на человека и другие виды организмов радиационного излучения. По оценкам экспертов, этот вид загрязнения среды в России и в других государствах СНГ находится на втором месте после химического загрязнения. К радиационному загрязнению относятся: 1) собственно радиационное загрязнение, под которым понимается физическое загрязнение среды, связанное с действием альфа- и бета-частиц и гамма-излучений, возникающих в результате распада радиоактивных веществ, 2) загрязнение окружающей среды радиоактивными веществами, т.е. по существу химическое загрязнение среды, связанное с превышением естественного уровня содержания (природного фона) радиоактивных веществ в окружающей среде. Факторы радиационной опасности разделяются по происхождению на естественные и антропогенные. К естественным факторам относятся ископаемые руды, излучение при распаде радиоактивных элементов в толще земли и др. Антропогенные факторы радиационной опасности связаны с добычей, переработкой и использованием радиоактивных веществ, производством и использованием атомной энергии, разработкой и испытанием ядерного оружия и т.п. Наибольшую опасность для здоровья человека представляют антропогенные факторы радиационной опасности, связанные со следующими видами и отраслями человеческой деятельности: - атомная промышленность; - ядерные взрывы; - ядерная энергетика; - медицина и наука. Они имеет свои основные источники загрязнения среды как радиоактивными элементами, так и радиационными излучениями. Кроме того, атомная промышленность и ядерная энергетика являются основными источниками радиоактивных отходов (РАО), исключительно опасных для всего живого на планете, что создало сравнительно новую проблему человечества – проблему захоронения, утилизации, складирования РАО, решение которой до сих пор не существует. Влияние радиации на организм человека: Радиация и ее влияние на человека может вызывать серьезные нарушения в здоровье. Поражение касается не только организма того, кто подвергся облучению, но и следующих поколений, так как радиация влияет на генетический аппарат. Поэтому радиоактивное влияние имеет два эффекта: · Соматический – возникают такие заболевания, как лейкозы, онкологические образования органов, локальные лучевые поражения и лучевая болезнь. · Генетический – приводит к генным мутациям и изменениям структуры хромосом. Облучение хронического характера несет меньшую нагрузку на организм, чем разовое в той же дозе, ведь успевают происходить восстановительные процессы. Скапливание радионуклидов в организме происходит неравномерно. Более всего страдают дыхательные и пищеварительные органы, через которые в организм проникают радионуклиды, печень и щитовидная железа. Среди онкологий, вызванных радиацией, наиболее распространены рак щитовидки и молочной железы. Лучевой лейкоз, то есть рак крови, может обнаружиться по прошествии четырех-десяти лет после облучения. Он особо опасен для тех, кто еще не достиг пятнадцатилетнего возраста. То, что радиация может приводить к этой болезни, свидетельствует ее рост у жителей Хиросимы и Нагасаки. Кроме того, было подмечено, что смертность среди рентгенологов увеличена именно по причине лейкоза. Облучение радиацией также чревато онкологией легких. В частности, диагноз распространен среди шахтеров, работающих на урановых рудниках. Самым известным последствием радиационного действия является лучевая болезнь. Ее провоцируют как разовые облучения, так и хронические. Большие дозы могут привести к летальному исходу. Мутации, которые проходят в генетическом аппарате в следствие облучения, на данный момент изучены не достаточно. Это обусловлено тем, что они способны проявляться через многие годы в разных поколениях. Тогда становится трудно доказать, по какой именно причине произошла та или иная мутация. Иногда они проявляются сразу. Такие мутации называют доминантными. Существуют рецессивные мутации, дающие знать о себе через поколения. Хотя они могут не выявиться в новых поколениях вообще. Мутации выявляются физическими или психическими нарушениями в здоровье потомков. Для этого поврежденному гену нужно соединиться с геном, обладающим одинаковым с ним повреждением. При внешних облучениях появляются ожоги кожных и слизистых покровов, разные по степеням тяжести. Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере теоретически для этого достаточно самой малой дозы. Однако в то же самое время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность, или риск, наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения. В своем последнем докладе НКДАР ООН впервые за 20 лет опубликовал подробный обзор сведений, относящихся к острому поражению организма человека, которое происходит при больших дозах облучения. Вообще говоря, радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения. Большое количество сведений было получено при анализе результатов применения лучевой терапии для лечения рака. Многолетний опыт позволил медикам получить обширную информацию о реакции тканей человека на облучение. Эта реакция для разных органов и тканей оказалась неодинаковой, причем различия очень велики. Красный костный мозг и другие элементы кроветворной системы наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах облучения 0,5-1 Гр. К счастью, они обладают также замечательной способностью к регенерации, и если доза облучения не настолько велика, чтобы вызвать повреждения всех клеток, кроветворная система может полностью восстановить свои функции. Если же облучению подверглось не все тело, а какая-то его часть, то уцелевших клеток мозга бывает достаточно для полного возмещения поврежденных клеток. Репродуктивные органы и глаза также отличаются повышенной чувствительностью к облучению. Однократное облучение семенников при дозе всего лишь в 0,1 Гр приводит к временной стерильности мужчин, а дозы свыше двух грэев могут привести к постоянной стерильности: лишь через много лет семенники смогут вновь продуцировать полноценную сперму. По-видимому, семенники являются единственным исключением из общего правила: суммарная доза облучения, полученная в несколько приемов, для них более, а не менее опасна, чем та же доза, полученная за один прием. Яичники гораздо менее чувствительны к действию радиации, по крайней мере у взрослых женщин. Но однократная доза > 3 Гр все же приводит к их стерильности, хотя еще большие дозы при дробном облучении никак не сказываются на способности к деторождению. Наиболее уязвимой для радиации частью глаза является хрусталик. Погибшие клетки становятся непрозрачными, а разрастание помутневших участков приводит сначала к катаракте, а затем и к полной слепоте. Чем больше доза, тем больше потеря зрения. Помутневшие участки могут образоваться при дозах облучения 2 Гр и менее. Более тяжелая форма поражения глаза - прогрессирующая катаракта - наблюдается при дозах около 5 Гр. Показано, что даже связанное с рядом работ профессиональное облучение вредно для глаз: дозы от 0,5 до 2 Гр, полученные в течение 10-20 лет, приводят к увеличению плотности и помутнению хрусталика. Разумеется, если доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывают настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней. При дозах облучения от 10 до 50 Гр при облучении всего тела поражение ЦНС может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек скорее всего все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте. При еще меньших дозах может не произойти серьезных повреждений желудочно-кишечного тракта или организм с ними справится, и тем не менее смерть может наступить через один-два месяца с момента облучения главным образом из-за разрушения клеток красного костного мозга-главного компонента кроветворной системы организма: от дозы в 3-5 Гр при облучении всего тела умирает примерно половина всех облученных. Дети также крайне чувствительны к действию радиации. Относительно небольшие дозы при облучении хрящевой ткани могут замедлить или вовсе остановить у них рост костей, что приводит к аномалиям развития скелета. Чем меньше возраст ребенка, тем сильнее подавляется рост костей. Суммарной дозы порядка 10 Гр, полученной в течение нескольких недель при ежедневном облучении, бывает достаточно, чтобы вызвать некоторые аномалии развития скелета. По-видимому, для такого действия радиации не существует никакого порогового эффекта. Оказалось также, что облучение мозга ребенка при лучевой терапии может вызвать изменения в его характере, привести к потере памяти, а у очень маленьких детей даже к слабоумию и идиотии. Кости и мозг взрослого человека способны выдерживать гораздо большие дозы. Крайне чувствителен к действию радиации и мозг плода, особенно если мать подвергается облучению между восьмой и пятнадцатой неделями беременности. В этот период у плода формируется кора головного мозга, и существует большой риск того, что в результате облучения матери (например, рентгеновскими лучами) родится умственно отсталый ребенок. Именно таким образом пострадали примерно 30 детей, облученных в период внутриутробного развития во время атомных бомбардировок Хиросимы и Нагасаки. Хотя индивидуальный риск при этом большой, а последствия доставляют особенно много страданий, число женщин, находящихся на этой стадии беременности, в любой момент времени составляет лишь небольшую часть всего населения. Это, однако, наиболее серьезный по своим последствиям эффект из всех известных эффектов облучения плода человека, хотя после облучения плодов и эмбрионов животных в период их внутриутробного развития было обнаружено немало других серьезных последствий, включая пороки развития, недоразвитость и летальный исход. Большинство тканей взрослого человека относительно мало чувствительны к действию радиации. Почки выдерживают суммарную дозу около 23 Гр, полученную в течение пяти недель, без особого для себя вреда, печень - по меньшей мере 40 Гр за месяц, мочевой пузырь - по меньшей мере 55 Гр за четыре недели, а зрелая хрящевая ткань-до 70 Гр. Легкие - чрезвычайно сложный орган - гораздо более уязвимы, а в кровеносных сосудах незначительные, но, возможно, существенные изменения могут происходить уже при относительно небольших дозах. 1.3. Источники радиационного загрязнения Факторы радиационной опасности разделяются по происхождению на естественные и антропогенные. К естественным факторам относятся ископаемые руды, излучение при распаде радиоактивных элементов в толще земли и др. Антропогенные факторы радиационной опасности связаны с добычей, переработкой и использованием радиоактивных веществ, производством и использованием атомной энергии, разработкой и испытанием ядерного оружия и т.п. Наибольшую опасность для здоровья человека представляют антропогенные факторы радиационной опасности, связанные со следующими видами и отраслями человеческой деятельности: - атомная промышленность; - ядерные взрывы; - ядерная энергетика; - медицина и наука. Они имеет свои основные источники загрязнения среды как радиоактивными элементами, так и радиационными излучениями. Кроме того, атомная промышленность и ядерная энергетика являются основными источниками радиоактивных отходов (РАО), исключительно опасных для всего живого на планете, что создало сравнительно новую проблему человечества – проблему захоронения, утилизации, складирования РАО, решение которой до сих пор не существует. Другая новая проблема вызвана реализацией достигнутых между ядерными державами соглашений по ядерному разоружению – это проблема ликвидации ядерного оружия, связанная в основном с демонтированием и безопасной транспортировкой, складированием и хранением большого количества ядерных боеголовок (до нескольких десятков тысяч с двух сторон – с российской и американской). Обе проблемы требуют колоссальных экономических затрат, сравнимых с национальным доходом развитых стран. В ближайшее время к этим двум добавится и третья проблема, вызванная окончанием срока эксплуатации десятков ядерных реакторов атомных электростанций (АЭС) и атомного подводного флота. Наиболее опасны стронций и цезий, которые трудно выводятся из организма. Обладая периодом полураспада, приблизительно равным средней продолжительности жизни человека, они создают опасность онкологических заболеваний и генетических нарушений. Атомная промышленность Атомная промышленность занимается добычей, переработкой и обогащением радиоактивного сырья, используемого далее либо как топливо в ядерной энергетике, либо для создания систем ядерного оружия (ядерные боеголовки). Следовательно, предприятия атомной промышленности имеют дело непосредственно с радиоактивными веществами, часть которых неизбежно попадает в окружающую человека среду в виде отходов либо рассеивается в почве, атмосфере, водоемах. Известно, что в России насчитывается около 800 ядерных объектов. С 1938 по 1993 гг. в мире было добыто около 1,7–1,8 млн. т природного урана. Сейчас суммарные запасы его оцениваются в 104–125 тыс. т в западных странах и 100 – 200 тыс. т в бывшем СССР. По экспертным оценкам, в мире произведено около 1100 т плутония (в том числе, 250–400 т оружейного плутония), из которых от 7 до 10 т распылено в окружающей среде. Учитывая очень большой период полураспада этого элемента, очевидно, что его вредное воздействие на биосферу и здоровье человека будет ощущаться многие сотни и даже тысячи лет. Отметим, что для человека смертельно опасны при попадании внутрь всего 2 мкг плутония. Согласно подсчетам известного ученого-ядерщика академика А.Д. Сахарова, которого называют «отцом советской водородной бомбы», рассеянные в биосфере 7–10 т плутония ответственны за гибель от рака и лейкемии более 5 млн. жителей планеты. Ядерные взрывы По официальным данным, к началу 1993 года на существующих в мире пяти ядерных полигонах – Невада (США, Великобритания), Новая земля (СССР, ныне Россия), Семипалатинск (Казахстан), Муруроа (Франция), Лобнор (Китай) было произведено более 2000 ядерных взрывов: Как известно, наибольший ущерб биосфере и человечеству был нанесен испытаниями ядерного оружия в атмосфере, которые продолжались до 1980 г. (Китай), хотя ведущие ядерные державы завершили их в 1962 (СССР) и 1963 (США) годах. Особенно сильно способствовал радиоактивному загрязнению Азиатского материка мощнейший (до 3 мегатонн) воздушный ядерный взрыв в Китае, последствия которого на территориях Средней и Центральной Азии, Сибири и Дальнего Востока прослеживаются до сих пор. Испытания ядерного оружия привели к распространению радиоактивных продуктов по всему земному шару. Продукты эти с осадками попадают из атмосферы в почву, грунтовые воды и, следовательно, в пищу человека и живых существ. Согласно некоторым оценкам, на долю наземных ядерных взрывов приходится более половины (до 5 т) рассеянного в настоящее время в биосфере плутония. Большая часть взрывов военного назначения относится к подземным испытаниям, которые также вносили свою, хотя и меньшую, долю выбросов радиоактивных веществ в окружающую среду. Наряду с такими подземными ядерными взрывами (ПЯВ) в мире с конца 50-х годов проводились подземные ядерные взрывы в мирных целях, т.е. для нужд народного хозяйства, например, для сооружения водохранилищ, подземных хранилищ вредных отходов, при добыче полезных ископаемых и т.п. Первый ПЯВ в мирных целях был осуществлен в США в 1957 г., а на территории России – в 1965 г. Такие взрывы проводились практически до начала 90-х годов. За этот период на территории СНГ, только по официальным данным, было проведено 116 взрывов, в том числе на территории России 90, (в европейской части – 59 взрывов, в Сибири – 31). Следовательно, к пяти ядерным суперполигонам надо добавить еще около двух сотен полигонов на земном шаре, которые также способствовали широкому распространению радиоактивного загрязнения биосферы. Ядерная энергетика Первая в мире АЭС (атомная электростанция) была построена в СССР в 1954 году в Обнинске под Москвой. В настоящее время уже около 30 стран производят электроэнергию на АЭС, а темпы прироста этого вида электроэнергии в мире в два раза превышают темпы прироста всех видов электроэнергии, несмотря на то, что ряд стран (Австрия, Россия, Швейцария) заморозили свои ядерно-энергетические программы после Чернобыльской катастрофы. Доля ядерной электроэнергетики в мире составляет 17%. Ведущей в этой области в настоящее время является Франция, которая вырабатывает на АЭС 75% электроэнергии. В России выработка электроэнергии на АЭС составляет около 12%. В списке стран, имеющих АЭС, Россия по производству электроэнергии на АЭС занимает 18-е место. Для сравнения отметим, что США со своими 19% в этом списке находятся на 11-м месте. Одной из экологически важных проблем развития ядерной энергетики является упоминаемая ранее проблема хранения и переработки радиоактивных отходов.
Не смогли найти подходящую работу?
Вы можете заказать учебную работу от 100 рублей у наших авторов.
Оформите заказ и авторы начнут откликаться уже через 5 мин!
Служба поддержки сервиса
+7(499)346-70-08
Принимаем к оплате
Способы оплаты
© «Препод24»

Все права защищены

Разработка движка сайта

/slider/1.jpg /slider/2.jpg /slider/3.jpg /slider/4.jpg /slider/5.jpg