Войти в мой кабинет
Регистрация
ГОТОВЫЕ РАБОТЫ / КУРСОВАЯ РАБОТА, ЭКОЛОГИЯ

Мониторинг радиоактивного загрязнения природной среды

happy_woman 384 руб. КУПИТЬ ЭТУ РАБОТУ
Страниц: 32 Заказ написания работы может стоить дешевле
Оригинальность: неизвестно После покупки вы можете повысить уникальность этой работы до 80-100% с помощью сервиса
Размещено: 09.01.2021
Целью работы является изучение и особенности мониторинга радиоактивного загрязнения природной среды. Для достижения указанной цели, в работе решаются следующие задачи: ? дается определение радиоактивного излучения, единицы измерения; ? рассматриваются особенности мониторинга ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами; ? дается характеристика приборов в области радиационного мониторинга.
Введение

Актуальность темы работы связана с тем, что радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Радиоактивные излучения вызывают ионизацию атомов и молекул живых тканей, в результате чего происходит разрыв нормальных связей и изменение химической структуры, что влечет за собой либо гибель клеток, либо мутацию организма. Действие мощных доз ионизирующих излучений вызывает гибель живой природы. Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей. Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным. Воды Мирового океана загрязняются более опасными радионуклидами, которые, обладая высокой биоаккумулирующей способностью переходят по пищевым цепям, и концентрируются в морских организмах высших трофических уровней, создавая опасность, как для гидробионтов, так и для человека. В связи с широким использованием в народном хозяйстве радиоактивных веществ появилась опасность загрязнения почв радионуклидами. Источники радиации — ядерные установки, испытание ядерного оружия, отходы урановых шахт. Потенциальными источниками, радиоактивного загрязнения могут стать аварии на ядерных установках, АЭС (как в Чернобыле, Екатеринбурге, а также в США, Англии).В верхнем слое почвы концентрируются радиоактивные стронций и цезий, откуда они попадают в организм животных и человека. Накопление большого количества радионуклидов в окружающей нас среде может привести к трагическим последствиям. Радиоактивные вещества имеют большой период полураспада, что позволяет им десятки и даже сотни лет подвергать все живое опасности и приводить к необратимым последствиям, поэтому необходимо проводить своевременный мониторинг радиационного загрязнения окружающей среды и предотвращать выбросы радиации в окружающую природную среду.
Содержание

Введение 3 1. Определение радиоактивного излучения, единицы измерения 5 1.1 Понятие и сущность радиоактивного излучения 5 1.2 Источники радиоактивных излучений и их характеристика 7 2 Особенности мониторинга ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами 9 2.1 Естественные и искусственные источники ионизирующих излучений 9 2.2 Порядок и объекты мониторинга радиационного загрязнения окружающей среды 16 2.3 Биоиндикационные методы радиационного контроля 20 2.4 Приборное обеспечение радиационно-экологического мониторинга 22 2.5 Характеристика приборов в области радиационного мониторинга 24 Заключение 30 Список использованных источников 32
Список литературы

1. Федеральный закон от 30 марта 1999 г. N 52-ФЗ "О санитарно-эпидемиологическом благополучии населения"// "Российская газета", N 64-65, 06.04.1999. (ред. от 26.07.2019) 2. Гигиенические требования по ограничению облучения населения за счет природных источников ионизирующего излучения. СП 2.6.1.1292-03. 3. Нормы радиационной безопасности (НРБ-99). СП 2.6.1.758-99. 4. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99). СП 2.6.1.799-99. 5. Александров Ю.А. Основы радиационной экологии. – Йошкар–Ола. 2017. – с. 32-84, 225-236. 6. Бобок С.А., Юртушкин В.И. Чрезвычайные ситуации: защита населения и территорий. – М.: «Издательство ГНОМ и Д», 2016. – с. 51– 64. 7. Медведев В.Т. Инженерная экология. – Москва. 2018. –с. 306– 342. 8. Леонов А.Ф., Поленов Б.В., Чебышов С.Б. Аппаратура защиты от радиационного терроризма. – Атомная стратегия. 2015. – с. 20-21. 9. Крючек Н. А., Латчук В. Н., Миронов С. К. Безопасность и защита населения в чрезвычайных ситуациях: Учебник для населения. – М.: Изд-во НЦ ЭНАС, 2018. – с. 98–113. 10. www.chelindustry.ru 11. http://www.dozimetr.biz/o_radiacii_i_radioactivnosty.php 12. Интернет: сайт http://www.rospribor.com
Отрывок из работы

1. Определение радиоактивного излучения, единицы измерения 1.1 Понятие и сущность радиоактивного излучения Радиация существовала всегда. Радиоактивные элементы входили в состав Земли с начала ее существования и продолжают присутствовать до настоящего времени. Однако само явление радиоактивности было открыто всего сто лет назад. В 1896 году французский ученый Анри Беккерель случайно обнаружил, что после продолжительного соприкосновения с куском минерала, содержащего уран, на фотографических пластинках после проявки появились следы излучения. Позже этим явлением заинтересовались Мария Кюри (автор термина «радиоактивность») и ее муж Пьер Кюри. В 1898 году они обнаружили, что в результате излучения уран превращается в другие элементы, которые молодые ученые назвали полонием и радием. К сожалению, люди, профессионально занимающиеся радиацией, подвергали свое здоровье, и даже жизнь, опасности из-за частого контакта с радиоактивными веществами. Несмотря на это, исследования продолжались, и в результате человечество располагает весьма достоверными сведениями о процессе протекания реакций в радиоактивных массах, в значительной мере обусловленных особенностями строения и свойствами атома. Различают несколько видов радиации: • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия. • Бета-частицы — обычные электроны. • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность. • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен. • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли. (рис1.1) Рисунок 1.1 – Виды радиационного излучения. [ 12 ] Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти. Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Таким образом, последствия радиации, которые могут привести к фатальным случаям, бывают как при однократном пребывании у сильнейшего источника излучения (естественного или искусственного), так и при хранении слаборадиоактивных предметов у себя дома (антиквариата, обработанных радиацией драгоценных камней, изделий из радиоактивного пластика). Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Впрочем, по этой же причине достаточным средством защиты от радиации данного типа является любой слой твердого или жидкого вещества, например, обычная одежда. 1.2 Источники радиоактивных излучений и их характеристика В окружающей нас природной среде насчитывается около 300 радионуклидов, как естественных, так и получаемых человеком искусственных. В биосфере Земли содержится более 60 естественных радионуклидов. При работе реакторов образуется около 80, при ядерных взрывах – около 200, промышленностью России выпускается более 140 радионуклидов. Радиоактивный фон нашей планеты складывается из четырех основных компонентов: -излучения, обусловленного космическими источниками; -излучения от рассеянных в окружающей среде первичных радионуклидов; -излучения от естественных радионуклидов, поступающих в окружающую среду от производств, не предназначенных непосредственно для их получения; -излучения от искусственных радионуклидов, образованных при ядерных взрывах и вследствие поступления отходов от ядерного топливного цикла и других предприятий, использующих искусственные радионуклиды. Первые два компонента определяют естественный радиационный фон. Третий компонент определяется как техногенно-измененный радиационный фон и формируется, главным образом, за счет выбросов естественных радионуклидов при сжигании органического топлива, поступления их при внесении минеральных (в первую очередь, фосфорных) удобрений и их содержания в строительных конструкциях и материалах. Источники радиации — ядерно-технические установки (ускорители частиц, реакторы, рентгеновское оборудование) и радиоактивные вещества. Они могут существовать значительное время, никак не проявляя себя, и Вы можете даже не подозревать, что находитесь рядом с предметом сильнейшей радиоактивности. Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва (аварии), но и на расстоянии десятков и даже сотен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких суток и недель после взрыва. Наиболее сильное заражение местности происходит при наземных ядерных взрывах, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией. Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть изменена какими-либо физическими или химическими методами. Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30— 50 мкм, принято называть ближним следом заражения. На больших расстояниях — дальний след — небольшое заражение местности не влияет на работоспособность персонала. Из всех видов радиации наиболее существенную угрозу представляет гамма излучение. Со времени открытия радиации и до настоящего времени человечество не научилось эффективно бороться и защитить себя от радиационного заражения.[ 1, 12 ] 2 Особенности мониторинга ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами 2.1 Естественные и искусственные источники ионизирующих излучений Все живые существа на Земле постоянно подвергаются воздействию ионизирующей радиации путем внешнего и внутреннего облучения за счет естественных и искусственных источников ионизирующих излучений, которые образуют радиационный фон. Естественные источники ИИ – это есть совокупность космического излучения, излучения от естественных радионуклидов, рассеянных в атмосфере, литосфере, гидросфере и находящихся в составе биологических организмов: все эти излучения образуют природный радиационный фон (ПРФ) или естественный радиационный фон (ЕРФ), средняя эффективная доза которого составляет 2000 мкЗв в год на человека. Искусственные источники ИИ – это совокупность ИИ и РВ, образующихся в результате ядерных взрывов, деятельности атомных электростанций, извлечения полезных ископаемых из недр Земли, применения ИИ и РВ в медицине, науке, в других отраслях хозяйственной деятельности человека. Совокупность этих источников составляет искусственный радиационный фон – ИРФ, который в настоящее время в целом по земному шар добавляет к ЕРФ лишь 1-3%. [ 1 ] К естественным источникам ионизирующего излучения относятся космическое излучение (первичное и вторичное), природные радиоактивные вещества, рассеянные в атмосферном воздухе, гидросфере и литосфере. Различают первичное и вторичное космическое излучение. Первичные космические лучи представляют собой поток частиц высоких энергий, приходящих на Землю из космоса и возникающих в процессе термоядерных реакций в недрах Солнца и звезд. Первичное космическое излучение состоит из протонов – 92%, альфа-частиц – 7%, ядер атомов лития, бериллия, углерода, азота и кислорода и др. Кроме того в состав космического излучения входят электроны, позитроны, гаммакванты и нейтрино. При резком увеличении солнечной активности возможно нарастание космического излучения на 4-100%. Лишь немногие первичные космические лучи достигают поверхности Земли, так как они взаимодействуют с атомами воздуха, рождая потоки частиц вторичного космического излучения. На орбите Земли скорость космических частиц примерно равна 300 км/с, т.е. около 0,001 с (где с – скорость света). Плотность космических частиц на орбите Земли зависит от интенсивности термоядерных реакций на Солнце. В спокойные периоды деятельности Солнца плотность первичных космических частиц на орбите Земли на высоте 50 км от ее поверхности равна 1-2 част./см2 ? с. В периоды усиления активности Солнца количество их может достигать 100 част./см2 .Первичные космические частицы, обладая огромной энергией (в среднем 10 ГэВ) и скоростью, взаимодействуют с ядрами атомов, составляющих атмосферу, и рождают вторичное излучение. Вторичное космическое излучение состоит из электронов, нейтронов, мезонов и фотонов; максимум его интенсивности находится на высоте 20-30 км, на уровне моря интенсивность излучения составляет около 0,05% от первоначального. Элементарные частицы, составляющие вторичное космическое излучение, под действием магнитного поля Земли образуют вокруг нее два радиационных пояса – внешний и внутренний. На широте экватора внешний пояс расположен на расстоянии 20-60 тыс. км, а внутренний – на расстоянии 600-6000 км от поверхности Земли. На некоторых участках внутренний пояс может опускаться на расстояние до 300 км от поверхности Земли. Поскольку среди элементарных частиц радиационных поясов преобладают электроны и позитроны, то плотность частиц измеряется количеством электронно-позитронных пар на квадратный сантиметр в секунду. Плотность потока частиц во внешнем и внутреннем радиационных поясах равны соответственно 2107 и 1105 электрон/см2. Заряженные частицы вторичного космического излучения движутся вдоль силовых линий магнитного поля Земли, которое является для них ловушкой. В итоге в радиационных поясах нашей планеты потоки заряженных частиц в сотни миллионов раз превышают потоки солнечного ветра в космическом пространстве. На поверхность Земли попадает, главным образом, вторичное космическое излучение, которое создает ионизацию компонентов атмосферы. Интенсивность ионизации возрастает с увеличением высоты. На уровне моря она минимальна, а на высоте 12-16 км достигает максимума. Ионизация, вызываемая космическими лучами, возрастает в направлении от экватора к полюсам, что является следствием отклонения первично заряженных космических частиц магнитным полем Земли. У космических частиц есть так называемые мягкая и жесткая компоненты (составные части). Мягкая компонента состоит из электронов, позитронов и фотонов. По своей проникающей способности она близка к гамма-излучению. Жесткая компонента состоит из мю-мезонов и нейтрино. Жесткая компонента космического излучения обладает очень высокой проникающей способностью. Мю-мезоны могут проникать в толщу литосферы до 3 км, а нейтрино пронизывают Землю насквозь, улетая далее в космос. Встречающиеся в природе радиоактивные элементы принято называть естественными. Большинство из них – тяжелые элементы с порядковыми номерами от 81 до 96. Природные радиоактивные элементы путем альфа- и бета-распада превращаются в другие радиоактивные изотопы. Эта цепь радиоактивных превращений называется радиоактивным рядом или семейством. Тяжелые естественные радиоизотопы образуют четыре радиоактивных семейства: урана-радия; тория; актиния; нептуния. Массовые числа членов урано-радиевого ряда всегда четные и подчиняются закону: А = 4n + 2, где n изменяется от 51 до 59. Для ториевого ряда массовые числа четные и определяются по формуле: А = 4n, где n изменяется от 52 до 58. Для актиниевого ряда массовые числа элементов всегда нечетные и могут быть определены по формуле: А = 4n + 3, где n изменяется от 51 до 58. Массовые числа элементов ряда нептуния нечетные и определяются по формуле: А = 4n + 1, где n изменяется от 52 до 60. Родоначальники каждого семейства характеризуются очень большими периодами полураспада (см. табл. 1), которые сопоставимы с временем жизни Земли и всей Солнечной системы. Таблица 1 – родоначальники естественных радиоактивных семейств [ 1 ] Ряд Родоначальник семейства Период полураспада – Tфиз., годы A = 4n Торий-232 1,4 * 1010 A = 4n + 2 Уран-238 4,51 * 109 A = 4n + 3 Уран-235 7,13 * 108 A = 4n + 1 Нептуний-232 2,2 * 106 Самый большой период полураспада у тория (14 млрд лет), поэтому он со времени аккреации Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреации Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса. Периоды полураспада и типы распада членов естественных радиоактивных рядов приведены в таблице 2. Естественные радиоактивные семейства обладают рядом общих особенностей, которые заключаются в следующем: 1. Родоначальники каждого семейства характеризуются большими периодами полураспада, находящимися в пределах 108-1010 лет. 2. Каждое семейство имеет в середине цепи превращений изотоп элемента, относящийся к группе благородных газов (эманацию). 3. За радиоактивными газами следуют твердые короткоживущие элементы. Первые наблюдения радиоактивности почв и горных пород были проведены в самом начале XX века. Последующие исследования показали, что все объекты географической оболочки обладают определенной радиоактивностью. За последние десятилетия человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в мирных целях: в медицине и для создания ядерного оружия, для производства электроэнергии и обнаружения пожаров, для изготовления светящихся циферблатов часов, приборов ночного видения и для поиска полезных ископаемых. Индивидуальные дозы, полученные людьми от искусственных источников ионизирующего излучения, сильно различаются, иногда облучение за счет техногенных источников ионизирующих излучений оказывается намного сильнее, чем за счет естественной радиации. [ 8 ] Значительно меньше по сравнению с влиянием естественного фона доза, получаемая от радиоактивных выпадений в результате испытаний ядерного оружия. 2 декабря 1942 года на спортивной площадке Чикагского университета группой физиков-атомщиков под руководством великого итальянского ученого Энрико Ферми был запущен первый атомный котел, в котором происходила самоподдерживающаяся управляемая атомная реакция. Этому успеху предшествовали почти полувековые исследования в области теоретической и экспериментальной физики, проводимые под руководством П. Кюри, М. Склодовской-Кюри, Э. Резерфорда, Н. Бора, А. Эйнштейна, М. Планка, Ф. Жолио-Кюри, И. Жолио-Кюри, Л. Мейтнер, О. Гана, Д. Чедвика, В. Гейзенберга, И.В. Курчатова и других выдающихся ученых-атомщиков. Результаты осуществленной группой Ферми цепной реакции были с самого начала поставлены на военные рельсы, а именно – на срочное создание в США атомного оружия с целью опередить Гитлера, физики которого работали в этом же направлении. В 1944 году в США под руководством Э. Ферми была создана и испытана атомная бомба, а в августе 1945 г. атомной бомбардировке подверглись японские города Хиросима и Нагасаки. Тогда погибла третья часть населения этих городов. В последующие годы многие умирали от лучевой болезни, лейкозов и других недугов, связанных с радиоактивным облучением. 25 декабря 1946 г. под руководством И.В. Курчатова был осуществлен запуск первого советского управляемого уран-графитового реактора, в котором в дальнейшем производился оружейный плутоний, использующийся в качестве ядерного заряда вместо урана-235 при производстве атомного оружия.
Не смогли найти подходящую работу?
Вы можете заказать учебную работу от 100 рублей у наших авторов.
Оформите заказ и авторы начнут откликаться уже через 5 мин!
Служба поддержки сервиса
+7(499)346-70-08
Принимаем к оплате
Способы оплаты
© «Препод24»

Все права защищены

Разработка движка сайта

/slider/1.jpg /slider/2.jpg /slider/3.jpg /slider/4.jpg /slider/5.jpg