Импульсные системы авторегулирования. Влияние дискретизации по времени на процессы в САР
Если в системе автоматического регулирования рассогласование y(t) – xз(t) измеряется не непрерывно, а в течение конечных интервалов времени, следующих с некоторыми промежутками, то такие системы называются системами прерывистого регулирования или импульсными системами. Информация о величине рассогласования в таких системах передается с помощью импульсной модуляции (АИМ, ВИМ или ШИМ).
В импульсной системе выделяют импульсный элемент (ИЭ) и непрерывную часть (НЧ), как показано на рис. 1.
Рис. 1
Импульсный элемент осуществляет импульсную модуляцию, а все устройства аналоговой обработки процессов объединены в непрерывную часть. Рассмотрим системы с амплитудно-импульсной модуляцией. Различают АИМ первого и второго рода (см. рис. 2).
Рис. 2
Амплитудно-импульсный модулятор первого рода можно представить в виде ключа, периодически замыкающегося на время t. Системы авторегулирования с таким модулятором называют системами с конечным временем съема данных. За время импульса система работает как непрерывная, а в течение паузы она становится разомкнутой и регулирование происходит по законам экстраполяции, задаваемым передаточной функцией разомкнутой системы. В простейшем случае, когда непрерывная часть представляет собой интегратор, управляющее напряжение в течение паузы остается постоянным. Если помимо интегратора в непрерывную часть входят другие звенья, например инерционное, то в течение паузы напряжение будет изменяться, и это изменение может оказаться настолько большим, что система станет неустойчивой, хотя исходная непрерывная система устойчива.
Системы с конечным временем съема данных могут использоваться для периодической подстройки радиоустройств под нужные параметры. В этом случае за длительность импульса t процесс регулирования заканчивается. Если же длительность импульса мала по сравнению с временем регулирования в непрерывной системе, то процесс регулирования растягивается. Длительность этого процесса будет тем больше, чем меньше отношение t/T, где Т – интервал дискретизации.
В системах с АИМ-II измерение рассогласования и процесс регулирования разделены, то есть изменение рассогласования за время длительности импульса не сказывается на результате измерения. Напряжение на выходе импульсного элемента представляет собой последовательность импульсов формы S(t), следующих с периодом Т и промодулированных по амплитуде входным процессом U(t):
.
Импульс S(t) можно представить как реакцию линейного устройства, которое называют формирующим фильтром (ФФ), на d-импульс. Передаточная функция формирующего фильтра:
.
Тогда модель импульсной системы преобразуется к виду, представленному на рис. 3.Формирующий фильтр ФФ и непрерывная часть НЧ объединяются в приведенную непрерывную часть ПНЧ.
Рис. 3
В этой модели существует два типа сигналов: непрерывные – x(t), U(t), y(t) и импульсный:
,
представляющий собой последовательность d-функций, промодулированных по площади сигналом U(t). Оба типа сигналов можно описать решетчатыми функциями: несмещенной - для импульсного процесса и смещенной – для непрерывных процессов.
импульс система регулирование
Рис. 4
Тогда импульсная модель системы преобразуется в дискретную модель, показанную на рис. 4. На рис. 5 показано, как непрерывная функция y(t) заменяется смещенной решетчатой функцией y[nT,eT]. Здесь n определяет значение функции в момент дискретизации nT, а e, принимающая непрерывные значения от 0 до 1, - значения функции в интервале от nT до (n + 1)T.
Рис. 5
В дискретной модели процессы нормированы по времени, то есть являются функциями относительного времени = t/T. Дискретная передаточная функция приведенной непрерывной части Кпнч(z,e) равна отношению дискретных преобразований Лапласа (в форме Z-преобразования) выходного y[n,e] и входного u*[n] процессов. Ее можно найти по обычной передаточной функции Кпнч(р), пользуясь расширенными таблицами Z-преобразования. Обычно считают, что выходной процесс ключа, осуществляющего временную дискретизацию, равен входному процессу, взятому в моменты времени, предшествующие моменту дискретизации. Для непрерывного процесса значения справа и слева от момента дискретизации равны и U[n,0] = U[n,-0] = U[n]. Поскольку из-за принятых допущений часто нельзя сказать, будет ли выходной процесс непрерывным или может измениться скачком в момент дискретизации, то лучше всегда брать значение процесса слева от момента дискретизации. Поэтому значение выходного процесса в момент дискретизации равно (см. рис.5): y[n] = y[n,-0] = y[n-1,1]. Так как Z-преобразование такого процесса Z{y[n – 1,1]} = z-1Y(z,1), то это отразится в записи знаменателя передаточной функции замкнутой системы:
.
Переходная характеристика системы может быть найдена по ее изображению, равному произведению изображения единичного скачка на передаточную функцию замкнутой системы:
.
Рассмотрим в качестве примера систему, импульсный элемент которой формирует прямоугольные импульсы длительностью t, а непрерывная часть представляет собой интегратор с передаточной функцией К(р) = К/р. Так как прямоугольный импульс единичной амплитуды можно представить как разность единичных скачков 1(t) и 1(t - t), то
и
.
Числитель передаточной функции является иррациональным. В передаточной функции замкнутой системы иррациональным будет и знаменатель Анализ системы с такой передаточной функцией затруднителен, поэтому избавимся от иррациональности. Если допустить, что t мало и рt << 1, то e-pt » 1 - pt, и тогда Кфф(р) = [1 – (1 - pt)] / p = t. Физически это означает замену прямоугольного импульса единичной амплитуды с длительностью t d-импульсом с площадью t. Это приведет к изменению процесса на выходе ПНЧ (рис.6). Из-за принятой замены будет неправильно описываться процесс в интервале от 0 до t, но правильно – в интервале от t до Т. Отметим также, что эта замена привела к появлению скачков в процессе в моменты дискретизации.
Рис. 6
Таким образом, если пренебречь неточностью описания процессов в течение длительности импульса, то можно принять Кпнч(р) = Кt/p. Перейдем к нормированному времени = t/T. В соответствии со свойством преобразования Лапласа (изменение временного масштаба):
.
По таблицам Z-преобразования:
.
Дискретная передаточная функция замкнутой системы:
.
Для устойчивости дискретной системы требуется, чтобы корни характеристического уравнения (полюсы передаточной функции) находились внутри окружности единичного радиуса. Корень z = 1 - Kt. Система устойчива, если |1 - Кt| < 1, откуда 0 < Kt < 2.
Изображение переходной характеристики:
.
По таблицам Z-преобразования:
h[n,e] = 1 – (1 - Kt)n + 1.
Переходная характеристика h[n,e] будет монотонной при 0 < Kt < 1 и колебательной при 1 < Kt < 2. Так как h[n,e] не зависит от e, то в интервале между моментами квантования переходная характеристика остается постоянной. На рис. 7,а приведена переходная характеристика для Кt = 0,5. При точном учете характера процесса в течение длительности импульса t переходная характеристика была бы такой, как показано на рис. 7,б. Значения этих переходных характеристик слева от момента дискретизации совпадают:
h[n] = 1 – (1 - Kt)n (19)
Эти значения на переходных характеристиках отмечены точками.
Рис. 7
Если вместе с задающим воздействием поступает и возмущающее воздействие, представляющее собой стационарный случайный процесс, то регулирование будет происходить со случайной ошибкой. Отношение дисперсии ошибки s2ош к дисперсии возмущающего воздействия s2воз при условии, что значения возмущающего воздействия, отстоящие на интервал дискретизации, некоррелированы, определяется выражением:
,
где g[n] – импульсная характеристика замкнутой системы.
Так как импульсная характеристика является первой разностью переходной характеристики, то
g[n] = h[n+1] – h[n] = 1 – (1 - Kt)n+1 – 1 + (1 - Kt)n = Kt(1 - Kt)n.
Тогда:
.
По формуле для суммы членов геометрической прогрессии:
. (20)
Исследование импульсной системы проводится на модели, представленной на рис. 8.
Рис. 8
В верхней части модели собрана вспомогательная схема, формирующая очень короткие импульсы, которые с выхода блока CrossDetect подаются на схему Semple-Holde (S&H – слежение – запоминание), и импульсы длительностью t, которые подаются на импульсный модулятор. Длительность этих импульсов равна времени задержки блока задержки. Для сравнения процессов в импульсной и непрерывной системах собрана модель непрерывной системы с одним интегратором.
Импульсная модуляция производится блоком перемножения, на один из входов которого подается модулируемый процесс, а на второй – импульс единичной амплитуды. Для задания типа АИМ используется блок S&H. Выходной процесс этого блока совпадает с входным при управляющем сигнале <1, а при управляющем сигнале і1 остается постоянным и равным значению входного процесса в момент подачи этого сигнала. При подаче на управляющий вход коротких импульсов с блока CrossDetect блок S&H осуществляет операцию «выборка-хранение».
2. Цифровые системы авторегулирования. Влияние квантования по уровню на процессы в САР
В цифровых САР обработка информации производится в цифровой форме. Как правило, цифровые САР содержат и аналоговые устройства – объекты регулирования (ОР) - генераторы, двигатели и др., измерительные устройства (ИзмУ) - дискриминаторы. Структура такой системы приведена на рис. 9.
Рис. 9
Все вычисления производятся цифровым управляющим устройством ЦУУ. АЦП и ЦАП могут быть как самостоятельными устройствами, так и частью измерительного устройства (цифровые дискриминаторы) или объекта регулирования (ОР с цифровым управлением). Операции аналого-цифрового и цифро-аналогового преобразования являются нелинейными. В АЦП производится замена процесса, который может принимать любые значения, процессом, принимающим конечное число значений, а в ЦАП производится округление числа, так как разрядность ЦУУ, как правило, больше разрядности ЦАП.
Преобразование непрерывной величины в квантованную с наименьшей ошибкой осуществляется в устройствах квантования с двумя типами характеристик. Первая характеристика (рис. 10,а) имеет в окрестности нуля зону нечувствительности, а вторая (рис. 10,б) – релейную характеристику. Для обеих характеристик отклонение квантуемого процесса от квантованного не превышает половины шага квантования h. Характеристика стандартного АЦП приведена на рис. 10,в. Для нее максимальное отклонение входного и выходного процессов равно шагу квантования. Стандартный АЦП описывается уравнением: V = hE{U/h}. Здесь Е{a} означает целую часть числа a. Причем под целой частью следует понимать ближайшее целое число, меньшее a. Например, Е{0,2} = 0, а Е{-0,2} = -1. Заметим, что для формирования характеристики рис. 10,а нужно к входному процессу стандартного АЦП добавить h/2, а для формирования характеристики рис. 10,б – добавить h/2 к выходному процессу.