1. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of National Academy of Sciences, vol. 79 no. 8, 2554—2558.
2. Джеффри Е. Хинтон. Как обучаются нейронные сети. // В мире науки - 2012. -№11 - С. 103-107.
3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS. pp. 1106–1114 (2012)
4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
5. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image. Segmentation Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
6. GitHub - jocicmarko/ultrasound-nerve-segmentation: Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras
7. EU Marie Curie Initial Training Network (ITN) “REtinal VAscular Modelling, Measurement And Diagnosis" (REVAMMAD), Project no. 316990.
8. Data Science Bowl 2017, Predicting Lung Cancer: Solution Write-up, Team Deep Breath
9. Ежов А., Чечеткин В. Нейронные сети в медицине. Открытые системы N4/97 стр. 34-37.
10. Можаева, М.Г. О применении искусственных нейронных сетей как современного средства информатизации / М.Г. Можаева, В.А. Касторнова // Педагогическая информатика. - 2011. - №2. - С.87-98.
11. Hu YH1, Tompkins WJ, Urrusti JL, Afonso VX.: Applications of artificial neural networks for ECG signal detection and classification. J Electrocardiol. 1993;26 Suppl:66-73. PMID: 8189150
12. Lakra, S., Prasad, T. V., Ramakrishna, G.: The Future of Neural Networks. Conference: 6th National Conference - Computing For Nation Development. Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi. DOI: 10.13140/RG.2.1.2390.3848 (2012)
13. Land, W. H., Masters, T., Lo, J. Y., & McKee, D. W. (n.d.). Application of evolutionary computation and neural network hybrids for breast cancer classification using mammogram and history data. Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546). doi:10.1109/cec.2001.934320
14. Kumar, V., Webb, J. M., Gregory, A., Denis, M., Meixner, D. D., Bayat, M., … Alizad, A. (2018). Automated and real-time segmentation of suspicious breast masses using convolutional neural network. PLOS ONE, 13(5), e0195816. doi:10.1371/journal.pone.0195816
15. Tan, T. Z., Quek, C., & Ng, G. S. (n.d.). Ovarian cancer diagnosis using complementary learning fuzzy neural network. Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. doi:10.1109/ijcnn.2005.1556409
16. Ganesan, D. N., Venkatesh, D. K., Rama, D. M. A., & Palani, A. M. (2010). Application of Neural Networks in Diagnosing Cancer Disease using Demographic Data. International Journal of Computer Applications, 1(26), 81–97. doi:10.5120/476-783
17. Chang, P., Grinband, J., Weinberg, B. D., Bardis, M., Khy, M., Cadena, G., … Chow, D. (2018). Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. American Journal of Neuroradiology, 39(7), 1201–1207. doi:10.3174/ajnr.a5667