Войти в мой кабинет
Регистрация
ГОТОВЫЕ РАБОТЫ / РЕФЕРАТ, РАДИОФИЗИКА

Фильтры Калмана

irina_krut2020 120 руб. КУПИТЬ ЭТУ РАБОТУ
Страниц: 12 Заказ написания работы может стоить дешевле
Оригинальность: неизвестно После покупки вы можете повысить уникальность этой работы до 80-100% с помощью сервиса
Размещено: 29.04.2020
Реферат на тему:"Фильтры Калмана"
Введение

Фильтр Калмана – это эффективный последовательный рекурсивный алгоритм, использующий принятую модель динамической системы для получения оценки, которая может быть существенно скорректирована в результате анализа каждой новой выборки измерений во временной последовательности. Этот алгоритм находит применение в процессе управления многими сложными динамическими системами, например, непрерывными производственными процессами, самолетами, кораблями и космическими аппаратами. При управлении динамической системой, прежде всего, необходимо полностью знать её фазовое состояние в каждый момент времени. Но измерение всех переменных, которыми необходимо управлять, не всегда возможно, и в этих случаях фильтр Калмана является тем средством, которое позволяет восстановить недостающую информацию посредством имеющихся неточных (зашумленных) измерений Фильтр Калмана широко используется в инженерных и эконометрических приложениях: от радаров и систем технического зрения до оценок параметров макроэкономических моделей. Калмановская фильтрация является важной частью теории управления, играет большую роль в создании систем управления. Совместно с линейно-квадратичным регулятором фильтр Калмана позволяет решить задачу линейно-квадратичного гауссовского управления. Фильтр Калмана и линейно-квадратичный регулятор — возможное решение большинства фундаментальных задач в теории управления. В большинстве приложений размерность вектора состояния объекта превосходит размерность вектора данных наблюдения. И при этом фильтр Калмана позволяет оценивать полное внутреннее состояние объекта. Фильтр Калмана предназначен для рекурсивного дооценивания вектора состояния априорно известной динамической системы, то есть для расчёта текущего состояния системы необходимо знать текущее измерение, а также предыдущее состояние самого фильтра. Таким образом, фильтр Калмана, подобно другим рекурсивным фильтрам, реализован во временно?м, а не в частотном представлении, но в отличие от других подобных фильтров, фильтр Калмана оперирует не только оценками состояния, а ещё и оценками неопределенности (плотности распределения) вектора состояния, опираясь на формулу Байеса условной вероятности. Алгоритм работает в два этапа. На этапе прогнозирования фильтр Калмана экстраполирует значения переменных состояния, а также их неопределенности. На втором этапе, по данным измерения (полученного с некоторой погрешностью), результат экстраполяции уточняется. Благодаря пошаговой природе алгоритма, он может в реальном времени отслеживать состояние объекта (без заглядывания вперед, используя только текущие замеры и информацию о предыдущем состоянии и его неопределенности). Бытует ошибочное мнение, что для правильной работы фильтра Калмана якобы требуется гауссовское распределение входных данных. В исходной работе Калмана результаты о минимуме ковариации фильтра были получены на базе ортогональных проекций, без предположений о гауссовости ошибок измерений. Затем просто было показано, что для специального случая распределения ошибок по Гауссу фильтр дает точную оценку условной вероятности распределения состояния системы. Где используется: • Курсовертикали • Автопилот • Навигационные системы: • Инерциальные • Рельефометрические (по цифровым картам местности) • Спутниковые
Содержание

Введение 3 Возможности фильтра Калмана 5 Используемая модель динамической системы 7 Частичный фильтр 9 Минусы фильтра Калмана 11 Плюсы данного фильтра 11 Заключение 12 Список используемой литературы 13
Список литературы

1. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems // Transactions of the ASME – Journal of Basic Engineering. – 1960. – № 82. – P. 35–45. [электронный ресурс] URL: http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf (дата доступа 02.05.2018) 2. Худавердян Д. Фильтр Калмана [электронный ресурс] URL: https://habr.com/post/166693/ (дата доступа 03.05.2017) 3. Википедия – свободная энциклопедия [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/Фильтр_Калмана (дата доступа 03.05.2018)
Отрывок из работы

Возможности фильтра Калмана Наглядный пример возможностей фильтра — получение оптимальных, непрерывно обновляемых оценок положения и скорости некоторого объекта по результатам временно?го ряда неточных измерений его местоположения. Например, в радиолокации стоит задача сопровождения цели, определения её местоположения, скорости и ускорения, при этом результаты измерений поступают постепенно и сильно зашумлены. Фильтр Калмана использует вероятностную модель динамики цели, задающую тип вероятного движения объекта, что позволяет снизить воздействие шума и получить хорошие оценки положения объекта в настоящий, будущий или прошедший момент времени. Фильтр Калмана оперирует понятием вектора состояния системы (набором параметров, описывающих состояние системы на некоторый момент времени) и его статистическим описанием. В общем случае динамика некоторого вектора состояния описывается плотностями вероятности распределения его компонент в каждый момент времени. При наличии определённой математической модели производимых наблюдений за системой, а также модели априорного изменения параметров вектора состояния (а именно — в качестве марковского формирующего процесса) можно записать уравнение для апостериорной плотности вероятности вектора состояния в любой момент времени. Данное дифференциальное уравнение носит название уравнение Стратоновича. Уравнение Стратоновича в общем виде не решается. Аналитическое решение удается получить только в случае ряда ограничений (предположений): • гауссовые априорные и апостериорные плотности вероятности вектора состояния на любой момент времени (в том числе начальный) • гауссовые формирующие шумы • гауссовые шумы наблюдений • белые шумы наблюдений • линейность модели наблюдений • линейность модели формирующего процесса (который, напомним, должен являться марковским процессом) Классический фильтр Калмана является уравнениями для расчета первого и второго момента апостериорной плотности вероятности (в смысле вектора математических ожиданий и матрицы дисперсий, в том числе взаимных) при данных ограничениях. Ввиду того, что для нормальной плотности вероятности математическое ожидание и дисперсионная матрица полностью задают плотность вероятности, можно сказать, что фильтр Калмана рассчитывает апостериорную плотность вероятности вектора состояния на каждый момент времени. А значит полностью описывает вектор состояния как случайную векторную величину. Расчетные значения математических ожиданий при этом являются оптимальными оценками по критерию среднеквадратической ошибки, что и обуславливает его широкое применение. Существует несколько разновидностей фильтра Калмана, отличающихся приближениями и ухищрениями, которые приходится применять для сведения фильтра к описанному виду и уменьшения его размерности: • расширенный фильтр Калмана (EKF, Extended Kalman filter). Сведение нелинейных моделей наблюдений и формирующего процесса с помощью линеаризации посредством разложения в ряд Тейлора; • сигма-точечный фильтр Калмана (UKF, Unscented Kalman filter). Используется в задачах, в которых простая линеаризация приводит к уничтожению полезных связей между компонентами вектора состояния. В этом случае «линеаризация» основана на сигма-точечном преобразовании; • Ensemble Kalman filter (EnKF). Используется для уменьшения размерности задачи; • возможны варианты с нелинейным дополнительным фильтром, позволяющим привести негауссовые наблюдения к нормальным; • возможны варианты с «обеляющим» фильтром, позволяющим работать с «цветными» шумами; Кроме того, имеются аналоги фильтра Калмана, использующие полностью или частично модель непрерывного времени: • фильтр Калмана — Бьюси, в котором и эволюция системы, и измерения имеют вид функций от непрерывного времени; • гибридный фильтр Калмана, использующий непрерывное время при описании эволюции системы, и дискретные моменты времени для измерений. Используемая модель динамической системы Фильтры Калмана базируются на дискретизированных по времени линейных динамических системах. Такие системы моделируются цепями Маркова при помощи линейных операторов и слагаемых с нормальным распределением. Состояние системы описывается вектором конечной размерности — вектором состояния. В каждый такт времени линейный оператор действует на вектор состояния и переводит его в другой вектор состояния (детерминированное изменение состояния), добавляется некоторый вектор нормального шума (случайные факторы) и в общем случае вектор управления, моделирующий воздействие системы управления. Фильтр Калмана можно рассматривать как аналог скрытым моделям Маркова, с тем отличием, что переменные, описывающие состояние системы, являются элементами бесконечного множества действительных чисел (в отличие от конечного множества пространства состояний в скрытых моделях Маркова). Кроме того, скрытые модели Маркова могут использовать произвольные распределения для последующих значений вектора состояния, в отличие от фильтра Калмана, использующего модель нормально распределенного шума. Существует строгая взаимосвязь между уравнениями фильтра Калмана и скрытой модели Маркова. Обзор этих и других моделей дан Roweis и Chahramani (1999)[10].
Не смогли найти подходящую работу?
Вы можете заказать учебную работу от 100 рублей у наших авторов.
Оформите заказ и авторы начнут откликаться уже через 5 мин!
Похожие работы
Реферат, Радиофизика, 23 страницы
230 руб.
Реферат, Радиофизика, 13 страниц
130 руб.
Реферат, Радиофизика, 20 страниц
200 руб.
Реферат, Радиофизика, 17 страниц
170 руб.
Реферат, Радиофизика, 16 страниц
110 руб.
Служба поддержки сервиса
+7(499)346-70-08
Принимаем к оплате
Способы оплаты
© «Препод24»

Все права защищены

Разработка движка сайта

/slider/1.jpg /slider/2.jpg /slider/3.jpg /slider/4.jpg /slider/5.jpg