Онлайн поддержка
Все операторы заняты. Пожалуйста, оставьте свои контакты и ваш вопрос, мы с вами свяжемся!
ВАШЕ ИМЯ
ВАШ EMAIL
СООБЩЕНИЕ
* Пожалуйста, указывайте в сообщении номер вашего заказа (если есть)

Войти в мой кабинет
Регистрация
ГОТОВЫЕ РАБОТЫ / ДИССЕРТАЦИЯ, НЕФТЕГАЗОВОЕ ДЕЛО

Упрочнение поверхностей методом сварки трением с перемешиванием

taras_eg 650 руб. КУПИТЬ ЭТУ РАБОТУ
Страниц: 74 Заказ написания работы может стоить дешевле
Оригинальность: неизвестно После покупки вы можете повысить уникальность этой работы до 80-100% с помощью сервиса
Размещено: 07.01.2020
В данной работе был продемонстрирован относительно новый способ упрочения методом сварки трением с перемешиванием с добавлением армирующих частиц. По результатам анализа полученной поверхности, а также результатам дополнительных испытаний на трение изнашиванием с целью определения практического применения данного метода можно сделать следующие заключительные выводы: • Средние увеличение твёрдости по результатам данного упрочнения составляет порядка 20-22% • Объёмный износ пластины после упрочения сокращается от 20 до 50% • Расход энергии при упрочнении данным способом уменьшается почти в 100 раз относительно той же ЭДС • Позволяет упрочнять лишь требуемые поверхности оставляя основные механические свойства базового материала
Введение

Большинство технических неисправностей вызвано поверхностными процессами, такими как износ, усталость, коррозия или комбинацией этих процессов. Нужно иметь хорошее понимание трибологических свойств поверхностей, чтобы в дальнейшем можно было увеличить срок службы промышленных деталей [1]. T.W. Clyne и P.J. Withers [2] продемонстрировали, что добавление армирующих частиц в металлическую матрицу резко увеличивает общую износостойкость детали. Основное ограничение, по сообщениям T.W. Clyne и P.J. Withers [2], в типичных методах, такие как порошковая металлургия, плавление и литье – это то, что в них не достигается равномерное рассеивания арматуры в металлическом поверхностном слое. Более современные методы для улучшения износостойкости и поверхностных характеристик, такие как нанесение покрытия и обработка поверхности, описаны B. Bhushan [3] в его трудах. Среди этих методов металл-матричные композиты (ММК) усиленные частицами (особенно наночастицами) обеспечивают превосходные механические свойства (например, удельная прочность и высокая износостойкость). Тем не менее, M.J. Zehetbauer и Y.T. Zhu [4] успешно продемонстрировали, что приобретённые свойства за счёт частиц в композиционных материалах делают их менее. Также достижение равномерной дисперсии наночастиц в матрица является серьезной проблемой при изготовлении ММК. S.C. Tjong [5] объяснил это высоким отношением поверхностного к объема к объёму наночастиц. Спекание частиц является нежелательным решением для уменьшения общей энергия. Одним из вариантов преодоления этой проблемы является создание поверхностных нанокомпозитных слоёв (ПНС) для достижения оптимального состояния, когда и поверхностные, и объемные свойства материала оказываются удовлетворительными. J. Chen, и его соавторы [6] первые предположили, что образование слоя MMC на поверхности металлических частей является отличным способ для получения преимущества превосходных поверхностных свойств MMC без какого-либо вредного влияния на объемные свойства. Есть много способов формирования слоя MMC. Упрочение методом сварки трением с перемешиванием (СТП/FSP) - это относительно новый метод твердотельной обработки для изготовление поверхностных нанокомпозитов [7, 8]. G. Huang и Y. Shen [9] показали, что FSP также может быть использовано для улучшения микроструктурных свойств поверхности материала, которые применимы к производству MMC. Более того, R.S. Mishra и соавторы [7] признали, что FSP помогает в увеличении дисперсии наночастиц и измельчению образовавшихся зёрен при изготовлении. V. Sharma и др. [10] в деталях описали, что FSP это метод, который основывается на сварке трением с перемешиванием (FSW). Во время FSP, не расходуется в большинстве случаев цилиндрический инструмент с определенной геометрией, состоящий из плеча и пина, погружаемого в поверхность основного материала. Вращательное движение инструмента генерирует тепловую энергию за счет трения между самим инструментом и основным материалом. По мере ввода тепловой энергии увеличивается температура зоны перемешивания (ЗП). При повышении температуры до 60-90 процентов от температуры плавления материала значительно повышается пластификация материала. Поэтому размягченный материал начинает течь от передней части пина к задней за счёт вращательного движения в сочетании с поступательным движением самого инструмента. R.S. Mishra и соавторы [7] продемонстрировали, что при добавлении наночастиц в мягкий материал во время FSP, формируется улучшенный композитный слой. Более того, R. Kapoor и соавторы [11] сообщили о создании ультра-мелкозернистой структуры (УМЗ) с помощью FSP. A. Chabok и K. Dehghani [12] также сообщили о формировании нанозернистой (НЗ) структуры, состоящей в основном из высокоугловых границ зерен после FSP. R.Z. Valiev и др. [13] показали, что FSP ускоряет рекристаллизацию в базовом материале, как в случае многих других методов тяжелой пластической деформации (ПД) которые не выделяют значительного количества тепла во время процесса. Исследователи сообщают о производстве ПНС, содержащих твердую керамику частицы с использованием техники FSP на различных подложках. S. Ahmadifard и соавторы [14] провели исследования на влияние композита с фазовой поверхностью Al7075 / Ti3AlC2 MAX и обнаружили значительные улучшения в измельчении зерна, твердости и износостойкости. H. Izadi и др. [15] применяли FSP к спеченным частицам Al-SiC, изготовленным из обычного порошка металлургическими методами и заметил увеличение значений твердости с ростом содержания Si. Y. Huang и соавторы [16] использовали прямую обработку трением с перемешиванием (DFSP) для формирования поверхности композит AZ31-Mg / SiC и сообщил о значительном уменьшении размера зерна. H.R. Akramifard и соавторы. [17] улучшили механические свойства чистой меди благодаря формирование Cu / SiC поверхностного композитного слоя. A. Shamsipur и другие [18] создали Ti / TiN поверхностный композит и получили однородную дисперсию твердого TiN в титановой матрице. Значительно меньше внимания уделялось механизму образования поверхностных композитов на сталях методом FSP. Хотя некоторые успешные исследования, такие как сообщения L. Pan и др. [19] и O.O. Tinubu и др. [20] были проведены для улучшения трибологических свойства сталей при применении FSP. В данной магистерской диссертации основным объектом улучшения будет именно алюминиевый сплав Д16 (Al 2024), который по своим механическим свойствам имеет весьма неплохие показатели относительно остальных, неупрочнённых алюминиевых сплавов. Но так или иначе это отличных шаг к улучшения более твёрдых сплавов, таких как различные стали. ?
Содержание

ВВЕДЕНИЕ 6 ГЛАВА 1. ПОНЯТИЕ И СУЩНОСТЬ МЕТОДА УПРОЧНЕНИЯ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ 9 1.1. Сварка трением с перемешиванием 9 1.2. Суть упрочнения методом СТП 12 1.2. Упрочнение методом СТП без армирующих веществ 13 1.2.1. Инструменты 13 1.2.2. Подбор режимов 17 1.2.3. Влияние количества проходов на структуру упрочненной поверхности. 19 1.2.4. Коррозионное влияние 22 1.3. Упрочнение методом СТП с различными армирующими веществами. 23 1.3.1. Износ инструментов под влиянием армирующих частиц 25 1.3.2. Подбор режимов 27 1.3.3. Влияние количества проходов на структура упрочняемой поверхности. 30 1.3.4. Коррозионное влияние 31 ГЛАВА 2. СОЗДАНИЕ УПРОЧНЯЮЩИХ ПОВЕРХНОСТЕЙ В АЛЮМИНИЕВОМ СПЛАВЕ 32 2.1.1. Способ добавления армирующих частиц 32 2.1.2. Выбор инструмента 34 2.1.3 Расчёт объема упрочняющего вещества 36 ГЛАВА 3. АНАЛИЗ ПОЛУЧЕННЫХ ПОВЕРХНОСТЕЙ 37 3.1. Определение зон перемешивания 37 3.2. Поиск армирующих частиц и анализ их распределения 39 3.3. Определение твердости упрочненных поверхностей 42 3.3.1. Графики изменения твёрдости вдоль разреза шва 42 3.3.2 Графики изменения твёрдости на поверхности шва 44 3.3.3 Сравнение параметров упрочняющего порошка и их влияние на твердость 46 ГЛАВА 4. ИСПЫТАНИЯ НА ТРЕНИЕ 47 4.1. Оборудование и условия испытаний 47 4.2. Анализ полученных данных 48 4.2.1. Коэффициент трения 49 4.2.2. Поиск армирующих частиц в следе трения 51 4.2.2. Объёмный износ пластины 53 4.2.3. Поверхностный износ стальных шаров 54 4.3. Выводы из полученных данных испытаний 56 ЗАКЛЮЧЕНИЕ 59 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 60
Список литературы

1. Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, K. Lu, Effect of surface nanocrystallization on friction and wear properties in low carbon steel, Materials Science and Engineering: A 352(1-2) (2003) 144-149. 2. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press1995. 3. B. Bhushan, Principles and applications of tribology, John Wiley & Sons2013. 4. M.J. Zehetbauer, Y.T. Zhu, Bulk Nanostructured Materials, Wiley2009. 5. S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Advanced Engineering Materials 9(8) (2007) 639-652. 6. J. Chen, C. Hao, J. Zhang, Fabrication of 3D-SiC network reinforced aluminum–matrix composites by pressureless infiltration, Materials Letters 60(20) (2006) 2489-2492. 7. R.S. Mishra, Z.Y. Ma, I. Charit, Friction stir processing: a novel technique for fabrication of surface composite, Materials Science and Engineering: A 341(1–2) (2003) 307-310. 8. F. Liu, Y. Ji, Q. Meng, Z. Li, Microstructure and corrosion resistance of laser cladding and friction stir processing hybrid modification Al-Si coatings on AZ31B, Vacuum 133 (2016) 31-37. 9. G. Huang, Y. Shen, The effects of processing environments on the microstructure and mechanical properties of the Ti/5083Al composites produced by friction stir processing, Journal of Manufacturing Processes 30 (2017) 361-373. 10. V. Sharma, U. Prakash, B.M. Kumar, Surface composites by friction stir processing: A review, Journal of Materials Processing Technology 224 (2015) 117-134. 11. R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy, Materials Science and Engineering: A 527(20) (2010) 5246-5254. 12. A. Chabok, K. Dehghani, Formation of nanograin in IF steels by friction stir processing, Materials Science and Engineering: A 528(1) (2010) 309-313. 13. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering: A 168(2) (1993) 141-148. 14. S. Ahmadifard, A. Momeni, S. Bahmanzadeh, S. Kazemi, Microstructure, tribological and mechanical properties of Al7075 / Ti3AlC2 MAX-phase surface composite produced by friction stir processing, Vacuum 155 (2018) 134-141. 15. H. Izadi, A. Nolting, C. Munro, D.P. Bishop, K.P. Plucknett, A.P. Gerlich, Friction stir processing of Al/SiC composites fabricated by powder metallurgy, Journal of Materials Processing Technology 213(11) (2013) 1900-1907. 16. Y. Huang, T. Wang, W. Guo, L. Wan, S. Lv, Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by Direct Friction Stir Processing, Materials & Design 59 (2014) 274-278. 17. H.R. Akramifard, M. Shamanian, M. Sabbaghian, M. Esmailzadeh, Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing, Materials & Design 54 (2014) 838-844. 18. A. Shamsipur, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer, Surface and Coatings Technology 206(6) (2011) 1372-1381. 19. L. Pan, C.T. Kwok, K.H. Lo, Enhancement in hardness and corrosion resistance of AISI 420 martensitic stainless steel via friction stir processing, Surface and Coatings Technology 357 (2019) 339-347. 20. O.O. Tinubu, S. Das, A. Dutt, J.E. Mogonye, V. Ageh, R. Xu, J. Forsdike, R.S. Mishra, T.W. Scharf, Friction stir processing of A-286 stainless steel: Microstructural evolution during wear, Wear 356-357 (2016) 94-100. 21. R. Sathiskumar, N. Murugan, I. Dinaharan, S. Vijay, Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing, Materials characterization 84 (2013) 16-27. 22. O. Frigaard, O. Grong, O.T. Midling, A process model for friction stir welding of age hardening aluminum alloys, Metallurgical and Materials Transactions A 32(5) (2001) 1189-1200. 23. J. Tomas, Adhesion of ultrafine particles—a micromechanical approach, Chemical Engineering Science 62(7) (2007) 1997-2010. 24. T. Lienert, W. Stellwag Jr, B. Grimmett, R. Warke, Friction stir welding studies on mild steel, WELDING JOURNAL-NEW YORK- 82(1) (2003). 25. M. Mehranfar, K. Dehghani, Producing nanostructured super-austenitic steels by friction stir processing, Materials Science and Engineering: A 528(9) (2011) 3404-3408. 26. G.R. Cui, Z.Y. Ma, S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy, Acta Materialia 57(19) (2009) 5718-5729. 27. W. Zhang, Q. Wei, W.T. Huo, J.W. Lu, J.J. Hu, Y.S. Zhang, Dynamic recrystallization in nanocrystalline AZ31 Mg-alloy, Vacuum 143 (2017) 236-240. 28. F.J. Humphreys, P.B. Prangnell, R. Priestner, Fine-grained alloys by thermomechanical processing, Current Opinion in Solid State and Materials Science 5(1) (2001) 15-21. 29. T.R. McNelley, S. Swaminathan, J.Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Materialia 58(5) (2008) 349-354. 30. F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier2012. 31. C.Y. Liu, B. Zhang, Z.Y. Ma, G.B. Teng, L.L. Wei, W.B. Zhou, X.Y. Zhang, Effects of pre-aging and minor Sc addition on the microstructure and mechanical properties of friction stir processed 7055 Al alloy, Vacuum 149 (2018) 106-113. 32. G.S. Rohrer, “Introduction to Grains, Phases, and Interfaces—an Interpretation of Microstructure,” Trans. AIME, 1948, vol. 175, pp. 15–51, by CS Smith, Metallurgical and Materials Transactions A 41(5) (2010) 1063-1100. 33. C. Zener, Private communication to CS Smith, Trans. AIME 175 (1949) 15. 34. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering: R: Reports 50(1–2) (2005) 1-78. 35. D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, International Materials Reviews 39(1) (1994) 1-23. 36. T. Miyajima, Y. Iwai, Effects of reinforcements on sliding wear behavior of aluminum matrix composites, Wear 255(1–6) (2003) 606-616. 37. Mostafa Fotoohi Nezhad Khales, Seyed Abdolkarim Sajjadi*, «Assessment of microstructure and mechanical properties of multi-pass friction stir processed steel/SiC nanocomposite surface-layer"»Ata Kamyabi-Gol Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 7-17. 38. I. Dinaharan, S. J. Vijay, Esther Akinlabi «Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing» 39. Arbegast William J. Advances In Friction Stir Welding And Friction Stir Processing [Конференция] // 19th Summer PEWG Technical Working Group. - [б.м.] : National Science Foundation Center for Friction Stir Processing, 2009. 40. Arora H. S., Singh H. и Dhindaw B. K. Composite fabrication using friction stir processing—a review [Журнал] // International Journal of Advanced Manufacturing Technology. - London : [б.н.], 2012 г.. - № 61. - стр. 1043-1055. 41. Asadi P., Faraji G. и Besharati M. K. Producing of AZ91/SiC composite by friction stir processing (FSP) [Журнал] // The International Journal of Advanced Manufacturing Technology. - [б.м.] : Springer, Ноябрь 2010 г.. - № 1 : Т. 51. - стр. 247-260. 42. Azizieh M., Kooabi A. H. и Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing [Журнал] // Materials & Design. - Tehran : [б.н.], Апрель 2011 г.. - № 4 : Т. 32. - стр. 2034-2041. 43. Bahrami Mohsen, Dehghani Kamran и Besharati Givi Mohammad Kazem A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique [Журнал] // Materials & Design. - [б.м.] : Elsevier, Январь 2014 г.. - Т. 53. - стр. 217-225. 44. Bahrami Mohsen, Nikoo Mohsen Farahmand и Besharati Givi Mohammad Kazem Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes [Журнал] // Materials Science and Engineering: A. - Февраль 2015 г.. - Т. 626. - стр. 220-228. 45. Ceschini L. [и др.] Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite [Журнал] // Composites Science and Technology. - [б.м.] : Elsevier, Март 2007 г.. - № 3-4 : Т. 67. - стр. 605-615. 46. Choi Don-Hyun [и др.] Microstructure and mechanical property of A356 based composite by friction stir processing [Журнал] // Trans. Nonferrous Met. Soc. China. - 2013 г.. - № 23. - стр. 335-340. 47. Dinaharan I. [и др.] Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing [Журнал] // Materials Characterization. - 2016 г.. - № 118. - стр. 149-158. 48. Dolatkhah A. [и др.] Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing [Журнал] // Materials & Design. - [б.м.] : Elsevier, Май 2012 г.. - Т. 37. - стр. 458-464. 49. El-Rayes M. M. и El-Danaf E. A. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082 [Журнал] // Journal of Materials Processing Technology. - Riyadh : [б.н.], Май 2012 г.. - № 5 : Т. 212. - стр. 1157-1168. 50. Faraji G. и Asadi P. Characterization of AZ91/alumina nanocomposite produced by FSP [Журнал] // Materials Science and Engineering: A. - Tehran : [б.н.], 2011 г.. - № 6 : Т. 528. - стр. 2431-2440. 51. Feng A. H., Xiao B. L. и Ma Z. Y. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite [Журнал] // Composites Science and Technology. - [б.м.] : Elsevier, Июль 2008 г.. - № 9 : Т. 68. - стр. 2141-2148. 52. Gerlich A., Yamamoto M. и North T. N. Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds [Журнал] // Metallurgical and Materials Transactions A. - Июнь 2007 г.. - № 6 : Т. 38. - стр. 1291-1302. 53. Hamdollahzadeh A. [и др.] Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing [Журнал] // Journal of Manufacturing Processes. - [б.м.] : Elsevier, Октябрь 2015 г.. - Т. 20. - стр. 367-373. 54. Jamalian Hasan Mohammadzadeh [и др.] Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints [Журнал] // Journal of Manufacturing Processes. - 2016 г.. - № 21. - стр. 180-189. 55. Jata K. V. и Semiatin S. L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys [Журнал] // Scripta Materialia. - Сентябрь 2000 г.. - № 8 : Т. 43. - стр. 743-749. 56. Khorrami M. S., Kazeminezhad M. и Kokabi A. H. Microstructure evolutions after friction stir welding of severely deformed aluminum sheets [Журнал] // Materials & Design. - Tehran : [б.н.]. - Т. 40. - стр. 364-372. 57. Khorrami Mahmoud, Kazeminezhad M. и Kokabi A. H. The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum [Журнал] // Materials Science and Engineering A. - Апрель 2014 г.. - стр. 110-118. 58. Lee C. J., Huang J. C. и Hsieh P. J. Mg based nano-composites fabricated by friction stir processing [Журнал]. - Kaohsiung : [б.н.], 2006 г.. - № 7 : Т. 54. - стр. 1415-1420. 59. Liu H. J. [и др.] Wear characteristics of a WC–Co tool in friction stir welding of AC4AC30 vol% SiCp composite [Журнал] // International Journal of Machine Tools & Manufacture. - 2005 г.. - № 45. - стр. 1635-1639. 60. Mazaheri Y., Karimzadeh F. и Enayati M. H. A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing [Журнал] // Journal of Materials Processing Technology. - Isfahan : [б.н.], Октябрь 2011 г.. - № 10 : Т. 211. - стр. 1614-1619. 61. McNelley T. R., Swaminathan S. и Su J. Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys [Журнал] // Scripta Materialia. - Март 2008 г.. - № 5 : Т. 58. - стр. 349-354. 62. Mishra R. S. и Ma Z. Y. Friction stir welding and processing [Журнал] // Materials Science and Engineering R. - [б.м.] : Science direct, 2005 г.. - № 50. - стр. 1-78. 63. Morisda Y., Fujii H. и Fukusumi M. MWCNTs/AZ31 surface composites fabricated by friction stir processing [Журнал] // Materials Science and Engineering: A. - Osaka : [б.н.], Март 2006 г.. - № 1-2 : Т. 419. - стр. 344-348. 64. Moustafa Essam [et al.] Review Multi Pass Friction Stir Processing [Journal] // American Scientific Research Journal for Engineering, Technology, and Sciences. - Июль 2016. - № 1 : Vol. 22. - pp. 98-108. 65. Ren J. и Shan A. Strengthening and stress drop of ultrafine grain aluminum after annealing [Журнал] // Transactions of Nonferrous Metals Society of China. - Shanghai : [б.н.], Ноябрь 2010 г.. - № 11 : Т. 20. - стр. 2139-2142. 66. Sahraeinejad S. [и др.] Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters [Журнал] // Materials Science and Engineering A. - Февраль 2015 г.. - Т. 626. - стр. 505-513. 67. Santella M. L., Engstrom T. E. и Pan T.-Y. Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356 [Журнал] // Scripta Materialia. - Rapid City : [б.н.], Июль 2005 г.. - № 2 : Т. 53. - стр. 201-206. 68. Sato Y. S. [и др.] Microstructural evolution of 6063 aluminum during friction-stir welding [Журнал] // Metallurgical and Materials Transactions A. - Сентябрь 1999 г.. - № 9 : Т. 30. - стр. 2429-2437. 69. Shafiei-Zarghani A., Kashani-Bozorg S. F. и Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing [Журнал] // Materials Science and Engineering: A. - Tehran : [б.н.], 2009 г.. - № 1-2 : Т. 500. - стр. 84-91. 70. Sharifitabar M. [и др.] Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route [Журнал] // Materials & Design. - [б.м.] : Elsevier, Сентябрь 2011 г.. - № 8-9 : Т. 32. - стр. 4164-4172. 71. Sharma S. R., Ma Z. Y. и Mishra R. S. Effect of friction stir processing on fatigue behavior of A356 alloy [Журнал] // Scripta Materialia. - Август 2004 г.. - № 3 : Т. 51. - стр. 237-241. 72. Soleymani Soheyl, Abdollah-zadeh Amir и Alidokht Sima Ahmad Improvement in Tribological Properties of Surface Layer of an Al Alloy by Friction Stir Processing [Журнал] // Journal of Surface Engineered Materials and Advanced Technology. - [б.м.] : Scientific Reserch, 2011 г.. - № 1. - стр. 95-100. 73. Sterling Colin J. Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Fusion Welded 304L Stainless Steel [Отчет] / Department of Mechanical Engineering ; Brigham Young University. - Provo : [б.н.], 2004. 74. Su Jian-Qing, Nelson Tracy W. и Sterling Colin J. Microstructure evolution during FSW/FSP of high strength aluminum alloys [Журнал] // Materials Science and Engineering: A. - Сентябрь 2005 г.. - № 1-2 : Т. 405. - стр. 277-286. 75. Sun Y. [и др.] Effect of initial grain size on the joint properties of friction stir welded aluminum [Журнал] // Materials Science and Engineering: A. - Декабрь 2009 г.. - № 1-2 : Т. 527. - стр. 317-321. 76. Sun Y. F. и Fujii H. The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints [Журнал] // Materials Science and Engineering: A. - Июнь 2011 г.. - № 16-17 : Т. 528. - стр. 5470-5475. 77. Surekha K., Murty B. S. и Kalvala Prasad Microstructural characterization and corrosion behavior of friction stir processed AA2219 [Журнал] // Surface and Coatings Technology. - Май 2008 г.. - № 202. - стр. 4057-4068. 78. Tabasi M. [и др.] Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles [Журнал] // INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY. - Декабрь 2015 г.. 79. Topic I., Hoppel H. W. и Goken M. Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016 [Журнал] // Materials Science and Engineering: A. - Erlangen : [б.н.], Март 2009 г.. - № 1-2 : Т. 503. 80. Uzun Huseyin Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite [Журнал] // Materials & Design. - [б.м.] : Elsevier, 2007 г.. - № 5 : Т. 28. - стр. 1440-1446. 81. Wikipedia Friction stir processing [В Интернете] // Wikipedia. - 2016 г.. - https://en.wikipedia.org/wiki/Friction_stir_processing. 82. Wikipedia Friction stir welding [В Интернете] // Wikipedia. - 2017 г.. - https://en.wikipedia.org/wiki/Friction_stir_welding. 83. Yang M. [и др.] Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing [Журнал] // Journal of Materials Science. - Август 2010 г.. - № 16 : Т. 45. - стр. 4431-4438. 84. Бойцов А. Г. и Качко В. В. Сварка трением перемешиванием [В Интернете] // Мир сварки. - 27 07 2015 г.. - http://weldworld.ru/articles/svarka-treniem-peremeshivaniem/5684-svarka-treniem-peremeshivaniem.html. 85. ГК "Ростехнологии" Сварка трением [Отчет] / АОА "Научно=исследовательский институт природных, синтетитеских алмазов и инструмента". 86. Горцов Владимир Гергиевич [и др.] Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом [Патент] : 2595191. - Россия, Свердловская область, Екатеринбург. 87. Никулин И. [и др.] Эффект от СПДГ и сварки трением с перемешиванием на структуру и механические свойства Al–Cu–Mg–Ag листов [Журнал] // Materials Letters. - Белгород : [б.н.], Январь 2012 г.. - № 1 : Т. 66. - стр. 311-313. 88. Семенов Б. Н. [и др.] ВЛИЯНИЕ ТЕРМООБРАБОТКИ НА МЕХАНИЧЕСКИЕ СВОЙСТВА УЛЬТРАМЕЛКОЗЕРНИСТОГО АЛЮМИНИЯ [Журнал] // Materials Physics and Mechanics. - СПб. : [б.н.]. - Т. 24. - стр. 319-324. 89. Семенов Б. Н., Смирнов И. В. и Судьенков Ю. В. Оптоакустические исследования механических свойств ультрамелкозернистого алюминия АД1 после интенсивной пластической деформации кручением и термической обработки [Журнал]. - СПб. : [б.н.], 2016 г.. - стр. 52-58.
Отрывок из работы

ГЛАВА 1. ПОНЯТИЕ И СУЩНОСТЬ МЕТОДА УПРОЧНЕНИЯ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ 1.1. Сварка трением с перемешиванием Сварка трением с перемешиванием (СТП) – это процесс создания неразъемного соединения, в котором используется не расходуемый инструмент без расплавления материала заготовки. Тепло генерируется за счет трения при вращении инструмента о материал заготовки. Пластифицированный тепловыделением металл за счет сил трения закручивается относительно оси вращения инструмента. В процессе перемещения инструмента по стыку свариваемых поверхностей происходит перемешивание и перенос металла с формированием сварного шва [82] (см. рисунок 1.1). На 1.2 и 1.3 показаны характерные циклограммы СПТ [84]. Рисунок 1.1 – Схема процесса сварки трением с перемешиванием [85, стр. 9] Выполненные в последние годы исследования показали, что СТП является эффективным способом получения высококачественных соединений конструкций различной геометрии, включая листовые материалы, пространственные профильные конструкции, трубы, восстановления изношенных деталей, модифицирования и улучшения структуры материалов, залечивания трещин и литейных дефектов. Обладая широкими технологическими возможностями по получению неразъемных соединений деталей узлов, она может быть использована в качестве альтернативы заклепочным соединениям, контактной, шовной электродуговой, электроннолучевой и лазерной сваркам, сваривания разнородных материалов. Таким образом, СТП становится универсальной технологией, имеющей большие перспективы в различных отраслях производства. По мнению ведущих мировых экспертов, данный процесс является революционным в области сварки листовых материалов из легких сплавов (алюминиевых и магниевых). Эту технологию считают ключевой для создания авиационной техники пятого поколения. Толщины свариваемых СТП листовых материалов достигли для алюминиевых сплавов 110 мм, а для сталей и никелевых сплавов 45 мм [46].
Условия покупки ?
Не смогли найти подходящую работу?
Вы можете заказать учебную работу от 100 рублей у наших авторов.
Оформите заказ и авторы начнут откликаться уже через 5 мин!
Похожие работы
Диссертация, Нефтегазовое дело, 125 страниц
3750 руб.
Служба поддержки сервиса
+7 (499) 346-70-XX
Принимаем к оплате
Способы оплаты
© «Препод24»

Все права защищены

Разработка движка сайта

/slider/1.jpg /slider/2.jpg /slider/3.jpg /slider/4.jpg /slider/5.jpg